Atmospheric pressure helium plasma jets are widely used in biomedical applications. Researchers normally introduce small amounts of nitrogen and oxygen (0.2–1.0%) into helium to enhance the electron density and electron energy, thus increasing the concentration of active species in plasma. To further explore why the combination of impurity gases N2/O2 leads to an increase in the electron density from the discharge mechanism, we used a microwave Rayleigh scattering method with excellent time-varying characteristics to monitor the temporal electron density changes when different concentrations of N2/O2 were mixed. The research revealed that even trace amounts of N2/O2 (0.2%) can increase the peak electron density, with this effect being more pronounced when N2 is added, increasing from 3.3 × 1019 to 4.6 × 1019 m−3 in pure helium. As the concentration increases, the introduction of O2 leads to a rapid decrease in the electron density. When 1.0% oxygen is mixed, the electron density decreases from 3.3 × 1019 to 2.4 × 1019 m−3. However, the situation is different when N2 is added, at 0.5% proportion of nitrogen, the electron density increases to its maximum at 6.5 × 1019 m−3. These effects are due to the electronegativity of the oxygen-containing particles or the Penning ionization related to excited nitrogen species.

1.
X. P.
Lu
,
G. V.
Naidis
,
M.
Laroussi
,
S.
Reuter
,
D. B.
Graves
, and
K.
Ostrikov
,
Phys. Rep.
630
,
1
(
2016
).
2.
R.
Brandenburg
,
A.
Bogaerts
,
W.
Bongers
,
A.
Fridman
,
G.
Fridman
,
B. R.
Locke
,
V.
Miller
,
S.
Reuter
,
M.
Schiorlin
,
T.
Verreycken
, and
K.
Ostrikov
,
Plasma Process. Polym.
16
,
1700238
(
2019
).
3.
P. J.
Bruggeman
,
R. R.
Frontiera
,
U. R.
Kortshagen
,
M. J.
Kushner
,
S.
Linic
,
G. C.
Schatz
,
H.
Andaraarachchi
,
S.
Exarhos
,
L. O.
Jones
,
C. M.
Mueller
et al,
J. Appl. Phys.
129
,
200902
(
2021
).
4.
N. Y.
Babaeva
,
G. V.
Naidis
,
D. V.
Tereshonok
,
C.
Zhang
,
B. D.
Huang
, and
T.
Shao
,
Plasma Sources Sci. Technol.
30
,
115021
(
2021
).
5.
H. S.
Uhm
,
Y. H.
Na
,
E. H.
Choi
, and
G.
Cho
,
Phys. Plasmas
20
,
083502
(
2013
).
6.
F.
Wu
,
J.
Li
,
F.
Liu
,
X.
Zhou
, and
X.
Lu
,
J. Appl. Phys.
123
,
123301
(
2018
).
7.
M.
Keidar
,
Plasma Sources Sci. Technol.
24
,
033001
(
2015
).
8.
D.
Tian
,
Y.
Lv
,
L. L.
Nie
,
X.
Li
,
J. L.
Liu
, and
X. P.
Lu
,
Plasma Process Polym.
20
,
e2200216
(
2023
).
9.
T.
Von Woedtke
,
M.
Laroussi
, and
M.
Gherardi
,
Plasma Sources Sci. Technol.
31
,
054002
(
2022
).
10.
V.
Scholtz
,
J.
Pazlarova
,
H.
Souskova
,
J.
Khun
, and
J.
Julak
,
Biotechnol. Adv.
33
,
1108
(
2015
).
11.
Q. Y.
Li
,
L. L.
Nie
,
D. W.
Liu
,
S.
Kim
, and
X. P.
Lu
,
Plasma Process. Polym.
19
,
e2100248
(
2022
).
12.
K.
Oehmigen
,
J.
Winter
,
M.
Hahnel
,
C.
Wilke
,
R.
Brandenburg
,
K. D.
Weltmann
, and
T.
von Woedtke
,
Plasma Process. Polym.
8
,
904
(
2011
).
13.
D.
Wiczew
,
N.
Szulc
, and
M.
Tarek
,
Bioelectrochemistry
141
,
107869
(
2021
).
14.
J.
van der Paal
,
S.
Aernouts
,
A. C. T.
van Duin
,
E. C.
Neyts
, and
A.
Bogaerts
,
J. Phys. D: Appl. Phys.
46
,
395201
(
2013
).
15.
S.
Tian
,
X.
Wang
, and
Y.
Zhang
,
Plasma Process. Polym.
18
,
e2100124
(
2021
).
16.
L. P.
Wang
,
L. L.
Nie
,
D. W.
Liu
,
M.
Laroussi
, and
X. P.
Lu
,
Plasma Process. Polym.
20
,
e2300038
(
2023
).
17.
H.
Cheng
,
J. Y.
Luo
,
K.
Song
,
F.
Zhao
,
D. W.
Liu
,
L. L.
Nie
, and
X. P.
Lu
,
Phys. Plasmas
29
,
063506
(
2022
).
18.
X. P.
Lu
,
Y. G.
Cao
,
P.
Yang
,
Q.
Xiong
,
Z. L.
Xiong
,
Y. B.
Xian
, and
Y.
Pan
,
IEEE Trans. Plasma Sci.
37
,
668
(
2009
).
19.
A.
Shashurin
,
M. N.
Shneider
,
A.
Dogariu
,
R. B.
Miles
, and
M.
Keidar
,
Appl. Phys. Lett.
96
,
171502
(
2010
).
20.
M.
Zhang
,
Z. Q.
Chen
,
J. F.
Wu
,
H.
Zhang
,
S. Y.
Zhang
, and
X. P.
Lu
,
J. Appl. Phys.
128
,
123301
(
2020
).
21.
G. V.
Naidis
,
J. Phys. D: Appl. Phys.
44
,
215203
(
2011
).
22.
Y. B.
Xian
,
P.
Zhang
,
X. P.
Lu
,
X. K.
Pei
,
S. Q.
Wu
,
Q.
Xiong
, and
K.
Ostrikov
,
Sci. Rep.
3
,
1599
(
2013
).
23.
F.
Wu
,
J. Y.
Li
,
Y. B.
Xian
,
X.
Tan
, and
X. P.
Lu
,
Plasma Process. Polym.
18
,
e2100033
(
2021
).
24.
J. Y.
Li
,
F.
Wu
,
Y. B.
Xian
,
X. P.
Lu
, and
L. L.
Nie
,
Curr. Appl. Phys.
34
,
41
49
(
2022
).
25.
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
35
,
31
53
(
2006
).
26.
F. J.
Gordillo-Vázquez
,
J. Phys. D: Appl. Phys.
41
,
234016
(
2008
).
27.
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
38
,
1
20
(
2009
).
28.
M.
Younus
,
N. U.
Rehman
,
M.
Shafiq
,
S. S.
Hussain
,
M.
Zakaullah
, and
M.
Zaka-ul-Islam
,
Phys. Plasmas
23
,
083521
(
2016
).
29.
D.
Breden
,
K.
Miki
, and
L. L.
Raja
,
Plasma Sources Sci. Technol.
21
,
034011
(
2012
).
30.
X. Y.
Liu
,
M. B.
He
, and
D. W.
Liu
,
Phys. Plasmas
22
,
043513
(
2015
).
You do not currently have access to this content.