Classical Cherenkov radiation is a celebrated physics phenomenon of electromagnetic (EM) radiation stimulated by an electric charge moving with constant velocity in a three-dimensional dielectric medium. Cherenkov radiation has a wide spectrum and a particular distribution in space similar to the Mach cone created by a supersonic source. It is also characterized by the energy transfer from the charge's kinetic energy to the EM radiation. In the case of an electron beam passing through the middle of an EM waveguide, the radiation is manifested as collective Cherenkov radiation. In this case, the electron beam can be viewed as a one-dimensional non-neutral plasma, whereas the waveguide can be viewed as a slow wave structure. This collective radiation occurs, in particular, in traveling wave tubes (TWTs), and it features the energy transfer from the electron beam to the EM radiation in the waveguide. Based on a first principles Lagrangian field theory, we develop a convincing argument that the collective Cherenkov effect in TWTs is, in fact, a convective instability, that is, amplification. We also recover Pierce's theory as a high-frequency limit of our generalized Lagrangian theory. Finally, we derive for the first time expressions identifying low- and high-frequency cutoffs for amplification in TWTs.

1.
M. V.
Kuzelev
and
A. A.
Rukhadze
, “
Stimulated radiation from high-current relativistic electron beams
,”
Sov. Phys. Usp.
30
,
507
524
(
1987
).
2.
M. V.
Kuzelev
and
A. A.
Rukhadze
, “
Mechanisms of spontaneous and stimulated emission of relativistic electron beams
,” in
Problems of Theoretical Physics and Astrophysics (70th Anniversary of V.L. Ginzburg)
(
Nauka
,
Moscow
,
1989
), pp.
70
92
.
3.
M. V.
Kuzelev
and
A. A.
Rukhadze
, “
Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasma
,”
Phys. Usp.
51
,
989
1018
(
2008
).
4.
J. R.
Pierce
,
Traveling-Wave Tubes
(
D. van Nostrand
,
New York
,
1950
).
5.
T. M.
Antonsen
, Jr.
and
B.
Levush
, “
Traveling-wave tube devices with nonlinear dielectric elements
,”
IEEE Trans. Plasma Sci.
26
,
774
(
1998
).
6.
Z.
Duan
,
Y.
Gong
,
Y.
Wei
, and
W.
Wang
, “
Impact of attenuator models on computed traveling wave tube performances
,”
Phys. Plasmas
14
,
093103
(
2007
).
7.
D.
Chernin
,
T. M.
Antonsen
, Jr.
,
B.
Levush
, and
D. R.
Whaley
, “
A three-dimensional multifrequency large signal model for helix traveling wave tubes
,”
IEEE Trans. Electron Dev.
48
,
3
11
(
2001
).
8.
A.
Figotin
and
G.
Reyes
, “
Multi-transmission-line-beam interactive system
,”
J. Math. Phys.
54
,
111901
(
2013
).
9.
A.
Figotin
,
An Analytic Theory of Multi-Stream Electron Beams in Traveling Wave Tubes
(
World Scientific
,
Singapore
,
2020
).
10.
I. N.
Kartashov
,
M. V.
Kuzelev
,
A. A.
Rukhadze
, and
N.
Sepehri Javan
, “
Collective Cherenkov effect and anomalous Doppler effect in a bounded spatial region
,”
Tech. Phys.
50
,
298
307
(
2005
).
11.
S. H.
Gold
and
G. S.
Nusinovich
, “
Review of high-power microwave source research
,”
Rev. Sci. Instrum.
68
,
3945
3974
(
1997
).
12.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
, 3rd ed. (
CRC Press
,
Boca Raton, FL
,
2016
).
13.
S.
Tsimring
,
Electron Beams and Microwave Vacuum Electronics
(
John Wiley & Sons
,
New York
,
2007
).
14.
E.
Fermi
, “
The ionization loss of energy in gases and in condensed materials
,”
Phys. Rev.
57
,
485
493
(
1940
).
15.
G.
Afanasiev
,
Vavilov-Cherenkov and Synchrotron Radiation
(
Springer
,
Berlin
,
2004
).
16.
I.
Tamm
, “
General characteristics of radiation emitted by systems moving with super-light velocities with some applications to plasma physics
,” in
Nobel Lecture
(
Springer
,
1958
).
17.
V.
Ginzburg
, “
Radiation from uniformly moving sources (Vavilov-Cherenkov effect, transition radiation, and some other phenomena)
,”
Acoust. Phys.
54
,
11
23
(
2005
).
18.
V. A.
Buts
,
A. N.
Levedev
, and
V. I.
Kurilko
,
The Theory of Coherent Radiation by Intense Electron Beams
(
Springer
,
Berlin
,
2006
).
19.
I.
Frank
and
I.
Tamm
, “
Coherent radiation of fast electrons in a medium
,”
Dokl. Akad. Nauk
14
,
107
113
(
1937
); available at http://web.ihep.su/owa/dbserv/hw.part2?s_c=TAMM+1937.
20.
I.
Tamm
, “
Radiation emitted by uniformly moving electrons
,”
J. Phys. USSR
1
,
439
455
(
1939
); available at https://link.springer.com/chapter/10.1007/978-3-642-74626-0_3.
21.
J. R.
Pierce
, “
Waves in electron streams and circuits
,”
Bell Syst. Tech. J.
30
,
626
651
(
1951
).
22.
R.
Barker
,
J.
Booske
,
N.
Luhmann
, and
G.
Nusinovich
,
Modern Microwave and Millimeter-Wave Power Electronics
(
John Wiley & Sons
,
New York
,
2005
).
23.
L.
Schächter
,
Beam-Wave Interaction in Periodic and Quasi-Periodic Structures
, 2nd ed. (
Springer
,
Berlin
,
2011
).
24.
A. S.
Gilmour
,
Principles of Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons
(
Artech House
,
Norwood, MA
,
2011
).
25.
D. H.
Simon
,
P.
Wong
,
D.
Chernin
,
Y. Y.
Lau
,
B.
Hoff
,
P.
Zhang
,
C. F.
Dong
, and
R. M.
Gilgenbach
, “
On the evaluation of Pierce parameters C and Q in a traveling wave tube
,”
Phys. Plasmas
24
,
033114
(
2017
).
26.
K.
Rouhi
,
R.
Marosi
,
T.
Mealy
,
A.
Figotin
, and
F.
Capolino
, “
Parametric modeling of serpentine waveguide traveling wave tubes
,” arXiv:2308.03786v1 (
2023
).
27.
K. N.
Islam
and
E.
Schamiloglu
, “
Multiple electron beam generation with different energies and comparable currents from a single cathode potential for high power traveling wave tubes (TWTs)
,”
J. Appl. Phys.
131
,
044901
(
2022
).
28.
K. N.
Islam
,
L. D.
Ludeking
,
A. D.
Andreev
,
S.
Portillo
,
A. M.
Elfrgani
, and
E.
Schamiloglu
, “
Modeling and simulation of relativistic multiple electron beam generation with different energies from a single-cathode potential for high-power microwave sources
,”
IEEE Trans. Electron Dev.
69
,
1380
1388
(
2022
).
29.
E.
Schamiloglu
and
A.
Figotin
, “
Fundamental limitations of amplification in traveling wave tubes
,” (in preparation).
You do not currently have access to this content.