This paper discusses a strategy to initialize a two-dimensional (2D) Reynolds-averaged Navier–Stokes model [LANL's Besnard–Harlow–Rauenzahn (BHR) model] in order to describe an unsteady transitional Richtmyer–Meshkov (RM)-induced flow observed in on-going high-energy-density ensemble experiments performed on the OMEGA-EP facility. The experiments consist of a nominal single-mode perturbation (initial amplitude a 0 10 and wavelength λ = 100 μm) with target-to-target variations in the surface roughness subjected to the RM instability with delayed Rayleigh–Taylor in a heavy-to-light configuration. Our strategy leverages high-resolution three-dimensional (3D) implicit large eddy simulations (ILES) simulations to initialize BHR-relevant parameters and subsequently validate the 2D BHR results against the 3D ILES simulations. A suite of five 3D ILES simulations corresponding to five experimental target profiles is undertaken to generate an ensemble dataset. Using ensemble averages from the 3D simulations to initialize the turbulent kinetic energy in the BHR model (K0) demonstrates the ability of the model to predict the time evolution of the interface as well as the density-specific-volume covariance, b. To quantify the sensitivity of the BHR results to the choice of K0 and the initial turbulent length scale, S0, we execute a parameter sweep spanning four orders of magnitude for both S0 and K0, generating a parameter space consisting of 26 simulations. The Pearson's correlation coefficient is used as a measure of discrepancy between the 2D BHR and 3D ILES simulations and reveals that the ranges 8 S 0 20 μm and 109 K 0 10 10 cm2/s2 produce predictions that agree best with the 3D ILES results.

1.
D.
Hicks
,
N.
Meezan
,
E.
Dewald
,
A.
Mackinnon
,
R.
Olson
,
D.
Callahan
,
T.
Döppner
,
L.
Benedetti
,
D.
Bradley
,
P.
Celliers
et al, “
Implosion dynamics measurements at the national ignition facility
,”
Phys. Plasmas
19
,
122702
(
2012
).
2.
L.
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
1
,
170
177
(
1882
).
3.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. London, Ser. A. Math. Phys. Sci.
201
,
192
196
(
1950
).
4.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
319
(
1960
).
5.
E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1969
).
6.
W.
Thomson
, “
XLVI. Hydrokinetic solutions and observations
,”
Lond. Edinburgh, Dublin Philos. Mag. J. Sci.
42
,
362
377
(
1871
).
7.
H. L.
von Helmholtz
, “
XLIII. On discontinuous movements of fluids
,”
Lond. Edinburgh, Dublin Philos. Mag. J. Sci.
36
,
337
346
(
1868
).
8.
B. M.
Haines
,
R. C.
Shah
,
J. M.
Smidt
,
B. J.
Albright
,
T.
Cardenas
,
M. R.
Douglas
,
C.
Forrest
,
V. Y.
Glebov
,
M. A.
Gunderson
,
C. E.
Hamilton
et al, “
Observation of persistent species temperature separation in inertial confinement fusion mixtures
,”
Nat. Commun.
11
,
544
(
2020
).
9.
D.
Besnard
,
F. H.
Harlow
,
R. M.
Rauenzahn
, and
C.
Zemach
, “
Turbulence transport equations for variable-density turbulence and their relationship to two-field models
,” Report No. LA-12303-MS (
Los Alamos National Laboratory
,
Los Alamos, NM
,
1992
).
10.
J. D.
Schwarzkopf
,
D.
Livescu
,
R. A.
Gore
,
R. M.
Rauenzahn
, and
J. R.
Ristorcelli
, “
Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids
,”
J. Turbul.
12
,
N49
(
2011
).
11.
A.
Banerjee
,
R. A.
Gore
, and
M. J.
Andrews
, “
Development and validation of a turbulent-mix model for variable-density and compressible flows
,”
Phys. Rev. E
82
,
046309
(
2010
).
12.
N. O.
Braun
and
R. A.
Gore
, “
A multispecies turbulence model for the mixing and de-mixing of miscible fluids
,”
J. Turbul.
22
,
784
813
(
2021
).
13.
K.
Stalsberg-Zarling
and
R.
Gore
, “
The BHR2 turbulence model: Incompressible isotropic decay, Rayleigh-Taylor, Kelvin-Helmholtz and homogeneous variable density turbulence
,”
Report No. LA-UR-11-04773
(
Los Alamos National Laboratory
,
Los Alamos, NM
,
2011
).
14.
B.
Rollin
and
M.
Andrews
, “
On generating initial conditions for turbulence models: The case of Rayleigh–Taylor instability turbulent mixing
,”
J. Turbul.
14
,
77
106
(
2013
).
15.
V. N.
Goncharov
, “
Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers
,”
Phys. Rev. Lett.
88
,
134502
(
2002
).
16.
N. O.
Braun
and
R. A.
Gore
, “
A passive model for the evolution of subgrid-scale instabilities in turbulent flow regimes
,”
Physica D
404
,
132373
(
2020
).
17.
B. M.
Haines
,
F. F.
Grinstein
, and
J. D.
Schwarzkopf
, “
Reynolds-averaged Navier–Stokes initialization and benchmarking in shock-driven turbulent mixing
,”
J. Turbul.
14
,
46
70
(
2013
).
18.
D.
Holder
and
C.
Barton
, “
Shock tube Richtmyer–Meshkov experiments: Inverse chevron and half height
,” in
Proceedings of the Ninth International Workshop on the Physics of Compressible Turbulent Mixing
(
University of Cambridge
,
2004
).
19.
B. M.
Haines
,
F. F.
Grinstein
,
L.
Welser-Sherrill
, and
J. R.
Fincke
, “Simulations of material mixing in laser-driven Reshock experiments,”
Phys. Plasmas
20
,
022309
(
2013
).
20.
B. M.
Haines
,
F. F.
Grinstein
,
L.
Welser-Sherrill
,
J. R.
Fincke
, and
F. W.
Doss
, “
Simulation ensemble for a laser-driven shear experiment
,”
Phys. Plasmas
20
,
092301
(
2013
).
21.
K.
Flippo
,
F.
Doss
,
E.
Merritt
,
B.
DeVolder
,
C.
Di Stefano
,
P.
Bradley
,
D.
Capelli
,
T.
Cardenas
,
T.
Desjardins
,
F.
Fierro
et al, “
Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers
,”
Phys. Plasmas
25
,
056315
(
2018
).
22.
F.
Doss
,
T.
Desjardins
,
A. M.
Rasmus
,
E. C.
Merritt
,
S.
Pellone
,
J.
Charonko
,
A.
Martinez
,
J.
Levesque
, and
C. A.
Di Stefano
, “
Density variance dynamics in disparate shock tubes
,”
Los Alamos National Laboratory Technical report No. LA-UR-23-20147
(
2023
).
23.
C. A.
Di Stefano
,
F. W.
Doss
,
A. M.
Rasmus
,
K. A.
Flippo
, and
B. M.
Haines
, “
The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
,”
Phys. Plasmas
26
,
052708
(
2019
).
24.
C.
Di Stefano
,
A.
Rasmus
,
F.
Doss
,
K.
Flippo
,
J.
Hager
,
J.
Kline
, and
P.
Bradley
, “
Multimode instability evolution driven by strong, high-energy-density shocks in a rarefaction-reflected geometry
,”
Phys. Plasmas
24
,
052101
(
2017
).
25.
A. M.
Rasmus
,
C. A.
Di Stefano
,
K. A.
Flippo
,
F. W.
Doss
,
J. L.
Kline
,
J. D.
Hager
,
E. C.
Merritt
,
T. R.
Desjardins
,
W. C.
Wan
,
T.
Cardenas
et al, “
Shock-driven discrete vortex evolution on a high-Atwood number oblique interface
,”
Phys. Plasmas
25
,
032119
(
2018
).
26.
A. M.
Rasmus
,
C. A.
Di Stefano
,
K. A.
Flippo
,
F. W.
Doss
,
C.
Kawaguchi
,
J. L.
Kline
,
E. C.
Merritt
,
T. R.
Desjardins
,
T.
Cardenas
,
D. W.
Schmidt
et al, “
Shock-driven hydrodynamic instability of a sinusoidally perturbed, high-Atwood number, oblique interface
,”
Phys. Plasmas
26
,
062103
(
2019
).
27.
S.
Pellone
,
C.
Di Stefano
,
A. M.
Rasmus
,
C. C.
Kuranz
, and
E.
Johnsen
, “
Vortex-sheet modeling of hydrodynamic instabilities produced by an oblique shock interacting with a perturbed interface in the HED regime
,”
Phys. Plasmas
28
,
022303
(
2021
).
28.
S.
Kurien
,
F. W.
Doss
,
D.
Livescu
, and
K.
Flippo
, “
Extracting a mixing parameter from 2D radiographic imaging of variable-density turbulent flow
,”
Physica D
405
,
132354
(
2020
).
29.
M.
Gittings
,
R.
Weaver
,
M.
Clover
,
T.
Betlach
,
N.
Byrne
,
R.
Coker
,
E.
Dendy
,
R.
Hueckstaedt
,
K.
New
,
W. R.
Oakes
et al, “
The rage radiation-hydrodynamic code
,”
Comput. Sci. Discov.
1
,
015005
(
2008
).
30.
S. P.
Lyon
, “
Sesame: The Los Alamos National Laboratory equation of state database
,”
Report No. LA-UR-92-3407
(
Los Alamos National Laboratory
,
Los Alamos, NM
,
1992
).
31.
J.
Marozas
,
M.
Hohenberger
,
M.
Rosenberg
,
D.
Turnbull
,
T.
Collins
,
P.
Radha
,
P.
McKenty
,
J.
Zuegel
,
F.
Marshall
,
S.
Regan
et al, “
First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the national ignition facility
,”
Phys. Rev. Lett.
120
,
085001
(
2018
).
32.
I.
Igumenshchev
,
F.
Marshall
,
J.
Marozas
,
V.
Smalyuk
,
R.
Epstein
,
V.
Goncharov
,
T.
Collins
,
T.
Sangster
, and
S.
Skupsky
, “
The effects of target mounts in direct-drive implosions on omega
,”
Phys. Plasmas
16
,
082701
(
2009
).
33.
B. M.
Haines
,
G. P.
Grim
,
J. R.
Fincke
,
R. C.
Shah
,
C. J.
Forrest
,
K.
Silverstein
,
F. J.
Marshall
,
M.
Boswell
,
M. M.
Fowler
,
R. A.
Gore
et al, “
Detailed high-resolution three-dimensional simulations of omega separated reactants inertial confinement fusion experiments
,”
Phys. Plasmas
23
,
072709
(
2016
).
34.
E.
Harding
,
J.
Hansen
,
O.
Hurricane
,
R.
Drake
,
H.
Robey
,
C.
Kuranz
,
B.
Remington
,
M.
Bono
,
M.
Grosskopf
, and
R.
Gillespie
, “
Observation of a Kelvin-Helmholtz instability in a high-energy-density plasma on the omega laser
,”
Phys. Rev. Lett.
103
,
045005
(
2009
).
35.
O.
Hurricane
,
V.
Smalyuk
,
K.
Raman
,
O.
Schilling
,
J.
Hansen
,
G.
Langstaff
,
D.
Martinez
,
H.-S.
Park
,
B.
Remington
,
H.
Robey
et al, “
Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density omega laser experiment
,”
Phys. Rev. Lett.
109
,
155004
(
2012
).
36.
J. D.
Bender
,
O.
Schilling
,
K. S.
Raman
,
R. A.
Managan
,
B. J.
Olson
,
S. R.
Copeland
,
C. L.
Ellison
,
D. J.
Erskine
,
C. M.
Huntington
,
B. E.
Morgan
et al, “
Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer
,”
J. Fluid Mech.
915
,
A84
(
2021
).
37.
Y.
Yang
,
Q.
Zhang
, and
D. H.
Sharp
, “
Small amplitude theory of Richtmyer–Meshkov instability
,”
Phys. Fluids
6
,
1856
1873
(
1994
).
38.
R. L.
Holmes
,
G.
Dimonte
,
B.
Fryxell
,
M. L.
Gittings
,
J. W.
Grove
,
M.
Schneider
,
D. H.
Sharp
,
A. L.
Velikovich
,
R. P.
Weaver
, and
Q.
Zhang
, “
Richtmyer–Meshkov instability growth: Experiment, simulation and theory
,”
J. Fluid Mech.
389
,
55
79
(
1999
).
39.
J.
Canfield
,
N.
Denissen
,
M.
Francois
,
R.
Gore
,
R.
Rauenzahn
,
J.
Reisner
, and
S.
Shkoller
, “
A comparison of interface growth models applied to Rayleigh–Taylor and Richtmyer–Meshkov instabilities
,”
J. Fluids Eng.
142
,
121108
(
2020
).
40.
J. P.
Boris
,
F. F.
Grinstein
,
E. S.
Oran
, and
R. L.
Kolbe
, “
New insights into large eddy simulation
,”
Fluid Dyn. Res.
10
,
199
(
1992
).
41.
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
,
Implicit Large Eddy Simulation
(
Cambridge University Press
,
Cambridge
,
2007
), Vol.
10
.
42.
Y.
Zhou
,
F. F.
Grinstein
,
A. J.
Wachtor
, and
B. M.
Haines
, “
Estimating the effective Reynolds number in implicit large-eddy simulation
,”
Phys. Rev. E
89
,
013303
(
2014
).
You do not currently have access to this content.