Beams of energetic runaway electrons are generated during disruptions in tokamaks, and fluid models are used to study their effects on macroscale dynamics. Linear computations of a massless, runaway electron beam coupled to MHD plasma show that resistive hose instabilities grow faster than tearing modes at large resistivity. Eigenvalue results with reduced models of the resistive hose instability are compared with results from the full MHD and beam system, showing that the resistive hose decouples from any plasma response. An estimate of plasma temperature at which growth of the resistive hose dominates tearing for post-disruption DIII-D plasma parameters is in a physically relevant regime.

1.
B. N.
Breizman
,
P.
Aleynikov
,
E. M.
Hollmann
, and
M.
Lehnen
, “
Physics of runaway electrons in tokamaks
,”
Nucl. Fusion
59
,
083001
(
2019
).
2.
M.
Lehnen
,
K.
Aleynikova
,
P.
Aleynikov
,
D.
Campbell
,
P.
Drewelow
,
N.
Eidietis
,
Y.
Gasparyan
,
R.
Granetz
,
Y.
Gribov
,
N.
Hartmann
,
E.
Hollmann
,
V.
Izzo
,
S.
Jachmich
,
S.-H.
Kim
,
M.
Kofçan
,
H.
Koslowski
,
D.
Kovalenko
,
U.
Kruezi
,
A.
Loarte
,
S.
Maruyama
,
G.
Matthews
,
P.
Parks
,
G.
Pautasso
,
R.
Pitts
,
C.
Reux
,
V.
Riccardo
,
R.
Roccella
,
J.
Snipes
,
A.
Thornton
, and
P.
de Vries
, “
Disruptions in ITER and strategies for their control and mitigation
,”
J. Nucl. Mater.
463
,
39
48
(
2015
).
3.
Avinash
and
P. K.
Kaw
, “
Tearing of electron current beams with finite kinetic energy density
,”
Nucl. Fusion
28
,
107
124
(
1988
).
4.
C.
Liu
,
C.
Zhao
,
S. C.
Jardin
,
A.
Bhattacharjee
,
D. P.
Brennan
, and
N. M.
Ferraro
, “
Structure and overstability of resistive modes with runaway electrons
,”
Phys. Plasmas
27
,
092507
(
2020
).
5.
C.
Zhao
,
C.
Liu
,
S. C.
Jardin
, and
N. M.
Ferraro
, “
Simulation of MHD instabilities with fluid runaway electron model in M3D-C
,”
Nucl. Fusion
60
,
126017
(
2020
).
6.
Y.
Liu
,
L.
Li
,
C. C.
Kim
,
L. L.
Lao
, and
P. B.
Parks
, “
Interaction between runaway electrons and internal kink in a post-disruption plasma
,”
Nucl. Fusion
61
,
116021
(
2021
).
7.
P.
Helander
,
D.
Grasso
,
R. J.
Hastie
, and
A.
Perona
, “
Resistive stability of a plasma with runaway electrons
,”
Phys. Plasmas
14
,
122102
(
2007
).
8.
L.
Li
,
Y. Q.
Liu
,
Y. L.
He
,
Y. F.
Wang
,
L. J.
Guo
, and
F. C.
Zhong
, “
Effect of runaway electrons on tearing mode stability: With or without favorable curvature stabilization
,”
Nucl. Fusion
61
,
096034
(
2021
).
9.
M. N.
Rosenbluth
, “
Long-wavelength beam instability
,”
Phys. Fluids
3
,
932
936
(
1960
).
10.
S.
Weinberg
, “
The hose instability dispersion relation
,”
J. Math. Phys.
5
,
1371
1386
(
1964
).
11.
S.
Weinberg
, “
General theory of resistive beam instabilities
,”
J. Math. Phys.
8
,
614
641
(
1967
).
12.
R. F.
Fernster
,
S. P.
Slinker
,
M.
Lampe
, and
R. F.
Hubbard
, “
Controlling the resistive hose instability in relativistic electron beams
,”
Phys. Plasmas
2
,
4338
4354
(
1995
).
13.
H. S.
Uhm
and
M.
Lampe
, “
Theory of the resistive hose instability in relativistic electron beams
,”
Phys. Fluids
23
,
1574
1585
(
1980
).
14.
E. P.
Lee
, “
Low-frequency hydromagnetic kink mode of a relativistic beam
,”
Phys. Fluids
16
,
1072
1077
(
1973
).
15.
R. V.
Lovelace
, “
Low-frequency stability of high-current particle rings
,”
Phys. Fluids
19
,
723
737
(
1976
).
16.
D. A.
Spong
,
O. C.
Eldridge
, and
T.
Kammash
, “
Macroscopic kink instabilities in toroidal relativistic beams
,”
Plasma Phys.
19
,
817
838
(
1977
).
17.
D. A.
Spong
, “
Equilibrium, confinement and stability of runaway electrons in tokamaks
,”
Report No.
ORNL/TM-5147 (
Oak Ridge National Laboratory
,
1976
).
18.
A.
Lvovskiy
,
C.
Paz-Soldan
,
N. W.
Eidietis
,
A. D.
Molin
,
G. H.
DeGrandchamp
,
E. M.
Hollmann
,
J. B.
Lestz
,
C.
Liu
,
M.
Nocente
,
D.
Shiraki
, and
X. D.
Du
, “
Parametric study of Alfvénic instabilities driven by runaway electrons during the current quench in diii-d
,”
Nucl. Fusion
63
,
046011
(
2023
).
19.
C.
Sovinec
,
A.
Glasser
,
T.
Gianakon
,
D.
Barnes
,
R.
Nebel
,
S.
Kruger
,
D.
Schnack
,
S.
Plimpton
,
A.
Tarditi
, and
M.
Chu
, “
Nonlinear magnetohydrodynamics simulation using high-order finite elements
,”
J. Comput. Phys.
195
,
355
386
(
2004
).
20.
C. R.
Sovinec
, “
Stabilization of numerical interchange in spectral-element magnetohydrodynamics
,”
J. Comput. Phys.
319
,
61
78
(
2016
).
21.
E. M.
Hollmann
,
M. E.
Austin
,
J. A.
Boedo
,
N. H.
Brooks
,
N.
Commaux
,
N. W.
Eidietis
,
D. A.
Humphreys
,
V. A.
Izzo
,
A. N.
James
,
T. C.
Jernigan
,
A.
Loarte
,
J.
Martin-Solis
,
R. A.
Moyer
,
J. M.
Muñoz-Burgos
,
P. B.
Parks
,
D. L.
Rudakov
,
E. J.
Strait
,
C.
Tsui
,
M. A. V.
Zeeland
,
J. C.
Wesley
, and
J. H.
Yu
, “
Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D
,”
Nucl. Fusion
53
,
083004
(
2013
).
22.
C.
Paz-Soldan
,
C.
Reux
,
K.
Aleynikova
,
P.
Aleynikov
,
V.
Bandaru
,
M.
Beidler
,
N.
Eidietis
,
Y. Q.
Liu
,
C.
Liu
,
A.
Lvovskiy
,
S.
Silburn
,
L.
Bardoczi
,
L.
Baylor
,
I.
Bykov
,
D.
Carnevale
,
D. D.-C.
Negrete
,
X.
Du
,
O.
Ficker
,
S.
Gerasimov
,
M.
Hoelzl
,
E.
Hollmann
,
S.
Jachmich
,
S.
Jardin
,
E.
Joffrin
,
C.
Lasnier
,
M.
Lehnen
,
E.
Macusova
,
A.
Manzanares
,
G.
Papp
,
G.
Pautasso
,
Z.
Popovic
,
F.
Rimini
,
D.
Shiraki
,
C.
Sommariva
,
D.
Spong
,
S.
Sridhar
,
G.
Szepesi
, and
C.
Zhao
, “
A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability
,”
Nucl. Fusion
61
,
116058
(
2021
).
You do not currently have access to this content.