We demonstrate a methodology for diagnosing the multiscale dynamics and energy transfer in complex HED flows with realistic driving and boundary conditions. The approach separates incompressible, compressible, and baropycnal contributions to energy scale-transfer and quantifies the direction of these transfers in (generalized) wavenumber space. We use this to compare the kinetic energy (KE) transfer across scales in simulations of 2D axisymmetric vs fully 3D laser-driven plasma jets. Using the FLASH code, we model a turbulent jet ablated from an aluminum cone target in the configuration outlined by Liao et al. [Phys. Plasmas, 26 032306 (2019)]. We show that, in addition to its well known bias for underestimating hydrodynamic instability growth, 2D modeling suffers from significant spurious energization of the bulk flow by a turbulent upscale cascade. In 2D, this arises as vorticity and strain from instabilities near the jet's leading edge transfer KE upscale, sustaining a coherent circulation that helps propel the axisymmetric jet farther ( 25 % by 3.5 ns) and helps keep it collimated. In 3D, the coherent circulation and upscale KE transfer are absent. The methodology presented here may also help with inter-model comparison and validation, including future modeling efforts to alleviate some of the 2D hydrodynamic artifacts highlighted in this study.

1.
B. E.
Blue
,
S. V.
Weber
,
S. G.
Glendinning
,
N. E.
Lanier
,
D. T.
Woods
,
M. J.
Bono
,
S. N.
Dixit
,
C. A.
Haynam
,
J. P.
Holder
,
D. H.
Kalantar
,
B. J.
MacGowan
,
A. J.
Nikitin
,
V. V.
Rekow
,
B. M.
Van Wonterghem
,
E. I.
Moses
,
P. E.
Stry
,
B. H.
Wilde
,
W. W.
Hsing
, and
H. F.
Robey
, “
Experimental investigation of high-Mach-number 3D hydrodynamic jets at the National Ignition Facility
,”
Phys. Rev. Lett.
94
,
095005
(
2005
).
2.
A. M.
Khokhlov
,
P. A.
Höflich
,
E. S.
Oran
,
J. C.
Wheeler
,
L.
Wang
, and
A. Y.
Chtchelkanova
, “
Jet-induced explosions of core collapse supernovae
,”
Astrophys. J.
524
,
L107
(
1999
).
3.
D. S.
Clark
,
C. R.
Weber
,
J. L.
Milovich
,
J. D.
Salmonson
,
A. L.
Kritcher
,
S. W.
Haan
,
B. A.
Hammel
,
D. E.
Hinkel
,
O. A.
Hurricane
,
O. S.
Jones
,
M. M.
Marinak
,
P. K.
Patel
,
H. F.
Robey
,
S. M.
Sepke
, and
M. J.
Edwards
, “
Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
,”
Phys. Plasmas
23
,
056302
(
2016
).
4.
A.
Zylstra
,
D.
Casey
,
A.
Kritcher
,
L.
Pickworth
,
B.
Bachmann
,
K.
Baker
,
J.
Biener
,
T.
Braun
,
D.
Clark
,
V.
Geppert-Kleinrath
et al, “
Hot-spot mix in large-scale HDC implosions at NIF
,”
Phys. Plasmas
27
,
092709
(
2020
).
5.
B. M.
Haines
,
J. P.
Sauppe
,
B. J.
Albright
,
W. S.
Daughton
,
S. M.
Finnegan
,
J. L.
Kline
, and
J. M.
Smidt
, “
A mechanism for reduced compression in indirectly driven layered capsule implosions
,”
Phys. Plasmas
29
,
042704
(
2022
).
6.
S. R.
Goldman
,
S. E.
Caldwell
,
M. D.
Wilke
,
D. C.
Wilson
,
C. W.
Barnes
,
W. W.
Hsing
,
N. D.
Delamater
,
G. T.
Schappert
,
J. W.
Grove
,
E. L.
Lindman
,
J. M.
Wallace
,
R. P.
Weaver
,
A. M.
Dunne
,
M. J.
Edwards
,
P.
Graham
, and
B. R.
Thomas
, “
Shock structuring due to fabrication joints in targets
,”
Phys. Plasmas
6
,
3327
3336
(
1999
).
7.
S. R.
Goldman
,
C. W.
Barnes
,
S. E.
Caldwell
,
D. C.
Wilson
,
S. H.
Batha
,
J. W.
Grove
,
M. L.
Gittings
,
W. W.
Hsing
,
R. J.
Kares
,
K. A.
Klare
,
G. A.
Kyrala
,
R. W.
Margevicius
,
R. P.
Weaver
,
M. D.
Wilke
,
A. M.
Dunne
,
M. J.
Edwards
,
P.
Graham
, and
B. R.
Thomas
, “
Production of enhanced pressure regions due to inhomogeneities in inertial confinement fusion targets
,”
Phys. Plasmas
7
,
2007
2013
(
2000
).
8.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing—I
,”
Phys. Rep.
720
,
1
136
(
2017
).
9.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing—II
,”
Phys. Rep.
723
,
1
160
(
2017
).
10.
T.
Foglizzo
,
R.
Kazeroni
,
J.
Guilet
,
F.
Masset
,
M.
González
,
B. K.
Krueger
,
J.
Novak
,
M.
Oertel
,
J.
Margueron
,
J.
Faure
et al, “
The explosion mechanism of core-collapse supernovae: Progress in supernova theory and experiments
,”
Publ. Astron. Soc. Aust.
32
,
e009
(
2015
).
11.
H.-T.
Janka
,
T.
Melson
, and
A.
Summa
, “
Physics of core-collapse supernovae in three dimensions: A sneak preview
,”
Annu. Rev. Nucl. Part. Sci.
66
,
341
375
(
2016
).
12.
D.
Radice
,
E.
Abdikamalov
,
C. D.
Ott
,
P.
Mösta
,
S. M.
Couch
, and
L. F.
Roberts
, “
Turbulence in core-collapse supernovae
,”
J. Phys. G
45
,
053003
(
2018
).
13.
F.
Hanke
,
B.
Müller
,
A.
Wongwathanarat
,
A.
Marek
, and
H.-T.
Janka
, “
Sasi activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores
,”
Astrophys. J.
770
,
66
(
2013
).
14.
I.
Tamborra
,
F.
Hanke
,
H.-T.
Janka
,
B.
Müller
,
G. G.
Raffelt
, and
A.
Marek
, “
Self-sustained asymmetry of lepton-number emission: A new phenomenon during the supernova shock-accretion phase in three dimensions
,”
Astrophys. J.
792
,
96
(
2014
).
15.
S. M.
Couch
and
C. D.
Ott
, “
The role of turbulence in neutrino-driven core-collapse supernova explosions
,”
Astrophys. J.
799
,
5
(
2015
).
16.
R.
Betti
and
O. A.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nat. Phys.
12
,
435
448
(
2016
).
17.
D. J.
Schlossberg
,
G. P.
Grim
,
D. T.
Casey
,
A. S.
Moore
,
R.
Nora
,
B.
Bachmann
,
L. R.
Benedetti
,
R. M.
Bionta
,
M. J.
Eckart
,
J. E.
Field
et al, “
Observation of hydrodynamic flows in imploding fusion plasmas on the national ignition facility
,”
Phys. Rev. Lett.
127
,
125001
(
2021
).
18.
A. L.
Kritcher
,
C. V.
Young
,
H. F.
Robey
,
C. R.
Weber
,
A. B.
Zylstra
,
O. A.
Hurricane
,
D. A.
Callahan
,
J. E.
Ralph
,
J. S.
Ross
,
K. L.
Baker
et al, “
Design of inertial fusion implosions reaching the burning plasma regime
,”
Nat. Phys.
18
,
251
258
(
2022
).
19.
A. L.
Kritcher
,
A. B.
Zylstra
,
D. A.
Callahan
,
O. A.
Hurricane
,
C. R.
Weber
,
D. S.
Clark
,
C. V.
Young
,
J. E.
Ralph
,
D. T.
Casey
,
A.
Pak
et al, “
Design of an inertial fusion experiment exceeding the Lawson criterion for ignition
,”
Phys. Rev. E
106
,
025201
(
2022
).
20.
B. M.
Haines
,
R. C.
Shah
,
J. M.
Smidt
,
B. J.
Albright
,
T.
Cardenas
,
M. R.
Douglas
,
C.
Forrest
,
V. Y.
Glebov
,
M. A.
Gunderson
,
C. E.
Hamilton
,
K. C.
Henderson
,
Y.
Kim
,
M. N.
Lee
,
T. J.
Murphy
,
J. A.
Oertel
,
R. E.
Olson
,
B. M.
Patterson
,
R. B.
Randolph
, and
D. W.
Schmidt
, “
Observation of persistent species temperature separation in inertial confinement fusion mixtures
,”
Nat. Commun.
11
,
544
(
2020
).
21.
M.
Gatu Johnson
,
B.
Haines
,
P.
Adrian
,
C.
Forrest
,
J.
Frenje
,
V.
Glebov
,
W.
Grimble
,
R.
Janezic
,
J.
Knauer
,
B.
Lahmann
,
F.
Marshall
,
T.
Michel
,
F.
Séguin
,
C.
Stoeckl
, and
R.
Petrasso
, “
3D xRAGE simulation of inertial confinement fusion implosion with imposed mode 2 laser drive asymmetry
,”
High Energy Density Phys.
36
,
100825
(
2020
).
22.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
The MIT Press
,
Cambridge, MA
,
1972
).
23.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
New York
,
2000
).
24.
V.
Borue
and
S. A.
Orszag
, “
Local energy flux and subgrid-scale statistics in three-dimensional turbulence
,”
J. Fluid Mech.
366
,
1
31
(
1998
).
25.
G. L.
Eyink
, “
Cascade of circulations in fluid turbulence
,”
Phys. Rev. E
74
,
066302
(
2006
).
26.
G. L.
Eyink
, “
Dissipative anomalies in singular Euler flows
,”
Physica D
237
,
1956
1968
(
2008
).
27.
H.
Xu
,
A.
Pumir
, and
E.
Bodenschatz
, “
The pirouette effect in turbulent flows
,”
Nat. Phys.
7
,
709
712
(
2011
).
28.
P. L.
Johnson
, “
Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions
,”
Phys. Rev. Lett.
124
,
104501
(
2020
).
29.
R. H.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
1423
(
1967
).
30.
Z.
Xiao
,
M.
Wan
,
S.
Chen
, and
G. L.
Eyink
, “
Physical mechanism of the inverse energy cascade of two-dimensional turbulence: A numerical investigation
,”
J. Fluid Mech.
619
,
1
44
(
2009
).
31.
G.
Boffetta
and
R. E.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
451
(
2012
).
32.
D.
Zhao
,
R.
Betti
, and
H.
Aluie
, “
Scale interactions and anisotropy in Rayleigh-Taylor turbulence
,”
J. Fluid Mech.
930
,
A29
(
2022
).
33.
H.
Aluie
, “
Compressible turbulence: The cascade and its locality
,”
Phys. Rev. Lett.
106
,
174502
(
2011
).
34.
H.
Aluie
, “
Scale decomposition in compressible turbulence
,”
Physica D
247
,
54
65
(
2013
).
35.
H.
Aluie
,
S.
Li
, and
H.
Li
, “
Conservative cascade of kinetic energy in compressible turbulence
,”
Astrophys. J.
751
,
L29
(
2012
).
36.
A. G.
Kritsuk
,
R.
Wagner
, and
M. L.
Norman
, “
Energy cascade and scaling in supersonic isothermal turbulence
,”
J. Fluid Mech.
729
,
R1
(
2013
).
37.
J.
Wang
,
Y.
Yang
,
Y.
Shi
,
Z.
Xiao
,
X. T.
He
, and
S.
Chen
, “
Cascade of kinetic energy in three-dimensional compressible turbulence
,”
Phys. Rev. Lett.
110
,
214505
(
2013
).
38.
G. L.
Eyink
and
T. D.
Drivas
, “
Cascades and dissipative anomalies in compressible fluid turbulence
,”
Phys. Rev. X
8
,
011022
(
2018
).
39.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Ann. Rev. Fluid Mech.
32
,
1
32
(
2000
).
40.
G. L.
Eyink
, “
Locality of turbulent cascades
,”
Physica D
207
,
91
116
(
2005
).
41.
G. L.
Eyink
and
H.
Aluie
, “
Localness of energy cascade in hydrodynamic turbulence—I: Smooth coarse graining
,”
Phys. Fluids
21
,
115107
(
2009
).
42.
A.
Lees
and
H.
Aluie
, “
Baropycnal work: A mechanism for energy transfer across scales
,”
Fluids
4
,
92
(
2019
).
43.
A. S.
Liao
,
S.
Li
,
H.
Li
,
K.
Flippo
,
D.
Barnak
,
K. V.
Kelso
,
C.
Fiedler Kawaguchi
,
A.
Rasmus
,
S.
Klein
,
J.
Levesque
,
C.
Kuranz
, and
C.
Li
, “
Design of a new turbulent dynamo experiment on the OMEGA-EP
,”
Phys. Plasmas
26
,
032306
(
2019
).
44.
L.
Waxer
,
D.
Maywar
,
J.
Kelly
,
T.
Kessler
,
B.
Kruschwitz
,
S.
Loucks
,
R.
McCrory
,
D.
Meyerhofer
,
S.
Morse
,
C.
Stoeckl
, and
J.
Zuegel
, “
High-energy petawatt capability for the omega laser
,”
Opt. Photonics News
16
,
30
36
(
2005
).
45.
D. N.
Maywar
,
J. H.
Kelly
,
L. J.
Waxer
,
S. F. B.
Morse
,
I. A.
Begishev
,
J.
Bromage
,
C.
Dorrer
,
J. L.
Edwards
,
L.
Folnsbee
,
M. J.
Guardalben
,
S. D.
Jacobs
,
R.
Jungquist
,
T. J.
Kessler
,
R. W.
Kidder
,
B. E.
Kruschwitz
,
S. J.
Loucks
,
J. R.
Marciante
,
R. L.
McCrory
,
D. D.
Meyerhofer
,
A. V.
Okishev
,
J. B.
Oliver
,
G.
Pien
,
J.
Qiao
,
J.
Puth
,
A. L.
Rigatti
,
A. W.
Schmid
,
M. J.
Shoup
,
C.
Stoeckl
,
K. A.
Thorp
, and
J. D.
Zuegel
, “
OMEGA EP high-energy petawatt laser: Progress and prospects
,”
J. Phys.: Conf. Ser.
112
,
032007
(
2008
).
46.
B.
Fryxell
,
K.
Olson
,
P.
Ricker
,
F. X.
Timmes
,
M.
Zingale
,
D. Q.
Lamb
,
P.
MacNeice
,
R.
Rosner
,
J. W.
Truran
, and
H.
Tufo
, “
FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
,”
Astrophys. J. Suppl. Ser.
131
,
273
334
(
2000
).
47.
P.
Tzeferacos
,
A.
Rigby
,
A. F. A.
Bott
,
A. R.
Bell
,
R.
Bingham
,
A.
Casner
,
F.
Cattaneo
,
E. M.
Churazov
,
J.
Emig
,
F.
Fiuza
,
C. B.
Forest
,
J.
Foster
,
C.
Graziani
,
J.
Katz
,
M.
Koenig
,
C. K.
Li
,
J.
Meinecke
,
R.
Petrasso
,
H. S.
Park
,
B. A.
Remington
,
J. S.
Ross
,
D.
Ryu
,
D.
Ryutov
,
T. G.
White
,
B.
Reville
,
F.
Miniati
,
A. A.
Schekochihin
,
D. Q.
Lamb
,
D. H.
Froula
, and
G.
Gregori
, “
Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
,”
Nat. Commun.
9
,
591
(
2018
).
48.
P.
Tzeferacos
,
M.
Fatenejad
,
N.
Flocke
,
C.
Graziani
,
G.
Gregori
,
D. Q.
Lamb
,
D.
Lee
,
J.
Meinecke
,
A.
Scopatz
, and
K.
Weide
, “
Flash MHD simulations of experiments that study shock-generated magnetic fields
,”
High Energy Density Phys.
17
(
Part A
),
24
31
(
2015
).
49.
P.
Tzeferacos
,
A.
Rigby
,
A.
Bott
,
A. R.
Bell
,
R.
Bingham
,
A.
Casner
,
F.
Cattaneo
,
E. M.
Churazov
,
J.
Emig
,
N.
Flocke
,
F.
Fiuza
,
C. B.
Forest
,
J.
Foster
,
C.
Graziani
,
J.
Katz
,
M.
Koenig
,
C. K.
Li
,
J.
Meinecke
,
R.
Petrasso
,
H. S.
Park
,
B. A.
Remington
,
J. S.
Ross
,
D.
Ryu
,
D.
Ryutov
,
K.
Weide
,
T. G.
White
,
B.
Reville
,
F.
Miniati
,
A. A.
Schekochihin
,
D. H.
Froula
,
G.
Gregori
, and
D. Q.
Lamb
, “
Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo
,”
Phys. Plasmas, Phys. Plasmas
24
,
041404
(
2017
).
50.
FLASH Center
,
Flash User's Guide
(
FLASH Center for Computational Science
,
2019
).
51.
J.
Macfarlane
, “
IONMIX—A code for computing the equation of state and radiative properties of LTE and non-LTE plasmas
,”
Comput. Phys. Commun.
56
,
259
278
(
1989
).
52.
P.
MacNeice
,
K. M.
Olson
,
C.
Mobarry
,
R.
de Fainchtein
, and
C.
Packer
, “
PARAMESH: A parallel adaptive mesh refinement community toolkit
,”
Comput. Phys. Commun.
126
,
330
354
(
2000
).
53.
J. M.
Foster
,
B. H.
Wilde
,
P. A.
Rosen
,
T. S.
Perry
,
M.
Fell
,
M. J.
Edwards
,
B. F.
Lasinski
,
R. E.
Turner
, and
M. L.
Gittings
, “
Supersonic jet and shock interactions
,”
Phys. Plasmas
9
,
2251
2263
(
2002
).
54.
C.
Meneveau
, “
Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests
,”
Phys. Fluids
6
,
815
833
(
1994
).
55.
G. L.
Eyink
, “
Local energy flux and the refined similarity hypothesis
,”
J. Stat. Phys.
78
,
335
351
(
1995
).
56.
M.
Buzzicotti
,
M.
Linkmann
,
H.
Aluie
,
L.
Biferale
,
J.
Brasseur
, and
C.
Meneveau
, “
Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence
,”
J. Turbul.
19
,
167
197
(
2018
).
57.
S.
Du
,
H.
Li
,
X.
Fu
, and
Z.
Gan
, “
Anisotropic energy transfer and conversion in magnetized compressible turbulence
,”
Astrophys. J.
948
,
72
(
2023
).
58.
R. S.
Strichartz
,
A Guide to Distribution Theory and Fourier Transforms
(
World Scientific Publishing Company
,
2003
).
59.
L. C.
Evans
,
Partial Differential Equations
(
American Mathematical Society
,
2010
).
60.
A.
Leonard
, “
Energy cascade in large-eddy simulations of turbulent fluid flows
,”
Adv. Geophys.
18
,
237
(
1974
).
61.
M.
Germano
, “
Turbulence: The filtering approach
,”
J. Fluid Mech.
238
,
325
336
(
1992
).
62.
H.
Aluie
, “
Coarse-grained incompressible magnetohydrodynamics: Analyzing the turbulent cascades
,”
New J. Phys.
19
,
025008
(
2017
).
63.
I.
Daubechies
,
Ten Lectures on Wavelets
(
Society for Industrial and Applied Mathematics
,
1992
)
64.
H.
Aluie
,
M.
Hecht
, and
G. K.
Vallis
, “
Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach
,”
J. Phys. Oceanogr.
48
,
225
244
(
2018
).
65.
D.
Zhao
and
H.
Aluie
, “
Inviscid criterion for decomposing scales
,”
Phys. Rev. Fluids
3
,
054603
(
2018
).
66.
B. A.
Storer
,
M.
Buzzicotti
,
H.
Khatri
,
S. M.
Griffies
, and
H.
Aluie
, “
Global energy spectrum of the general oceanic circulation
,”
Nat. Commun.
13
,
5314
(
2022
).
67.
P.
Chassaing
, “
An alternative formulation of the equations of turbulent motion for a fluid of variable density
,”
J. Mec. Theor. Appl.
4
,
375
389
(
1985
).
68.
D. J.
Bodony
and
S. K.
Lele
, “
On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets
,”
Phys. Fluids
17
,
085103
(
2005
).
69.
G. C.
Burton
, “
Study of ultrahigh Atwood-number Rayleigh-Taylor mixing dynamics using the nonlinear large-eddy simulation method
,”
Phys. Fluids
23
,
045106
(
2011
).
70.
M.
Karimi
and
S. S.
Girimaji
, “
Influence of orientation on the evolution of small perturbations in compressible shear layers with inflection points
,”
Phys. Rev. E
95
,
033112
(
2017
).
71.
S.
Kida
and
S. A.
Orszag
, “
Energy and spectral dynamics in forced compressible turbulence
,”
J. Sci. Comput.
5
,
85
125
(
1990
).
72.
A. W.
Cook
and
Y.
Zhou
, “
Energy transfer in Rayleigh-Taylor instability
,”
Phys. Rev. E
66
,
026312
(
2002
).
73.
P.
Grete
,
B. W.
O'Shea
,
K.
Beckwith
,
W.
Schmidt
, and
A.
Christlieb
, “
Energy transfer in compressible magnetohydrodynamic turbulence
,”
Phys. Plasmas
24
,
092311
(
2017
).
74.
A. J.
Favre
,
J. J.
Gaviglio
, and
R. J.
Dumas
, “
Further space-time correlations of velocity in a turbulent boundary layer
,”
J. Fluid Mech.
3
,
344
356
(
1958
).
75.
T. D.
Drivas
and
G. L.
Eyink
, “
An Onsager singularity theorem for turbulent solutions of compressible Euler equations
,”
Commun. Math. Phys.
359
,
733
763
(
2018
).
76.
H.
Aluie
and
S.
Kurien
, “
Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows
,”
Europhys. Lett.
96
,
44006
(
2011
).
77.
M.
Sadek
and
H.
Aluie
, “
Extracting the spectrum of a flow by spatial filtering
,”
Phys. Rev. Fluids
3
,
124610
(
2018
).
78.
We note that the 4.1% difference between the two highlighted values in Table III ( 4.80 × 10 9 erg/cm3) and Table IV ( 4.60 × 10 9 erg/cm3) is, at least in part, due to temporal discretization errors when calculating the integrals Γ .
79.
J. O.
Hinze
,
Turbulence
,
2nd ed.
(
McGraw-Hill
,
1975
).
80.
X.
Bian
,
J. K.
Shang
,
E. G.
Blackman
,
G. W.
Collins
, and
H.
Aluie
, “
Scaling of turbulent viscosity and resistivity: Extracting a scale-dependent turbulent magnetic Prandtl number
,”
Astrophys. J. Lett.
917
,
L3
(
2021
).
81.
M.
Buzzicotti
,
B. A.
Storer
,
H.
Khatri
,
S. M.
Griffies
, and
H.
Aluie
, “
Spatio-temporal coarse-graining decomposition of the global ocean geostrophic kinetic energy
,”
J. Adv. Model. Earth Syst.
15
,
e2023MS003693
(
2023
).
82.
J. V.
Bladel
,
On Helmholtz's Theorem in Finite Regions
(
Midwestern Universities Research Association
,
Wisconsin
,
1958
).
83.
J.
Qian
, “
Inverse energy cascade in two-dimensional turbulence
,”
Phys. Fluids
29
,
3608
3611
(
1986
).
84.
H.
Aluie
,
S.
Rai
,
H.
Yin
,
A.
Lees
,
D.
Zhao
,
S. M.
Griffies
,
A.
Adcroft
, and
J. K.
Shang
, “
Effective drift velocity from turbulent transport by vorticity
,”
Phys. Rev. Fluids
7
,
104601
(
2022
).
You do not currently have access to this content.