The effect of driving frequency in the range of 13.56–73 MHz on electron energy distribution and electron heating modes in a 50 mTorr capacitively coupled argon plasma discharge is studied using 1D-3V particle-in-cell simulations. Calculated electron energy probability functions exhibit three distinct “temperatures” for low-, mid-, and high-energy electrons at all the studied driving frequencies. When compared to published experimental data, the calculated probability functions show a reasonable agreement for the energy range resolved in the measurements (about 2–10 eV). Discrepancies due to limitations in experimental energy resolution outside this range lead to differences between computational and experimental values of the electron number density determined from the distribution functions, and the predicted effective electron temperature is within 25% of experimental values. The impedance of the discharge is interpreted in terms of a homogeneous equivalent circuit model, and the driving frequency dependence of the inferred combined sheath thickness is found to obey a known, theoretically derived, power law. The average power transferred from the field to the electrons (electron heating) is computed, and a region of negative heating near the sheath edge, particularly at higher driving frequencies, is identified. Analysis of the electron momentum equation shows that electron inertia, which on temporal averaging would be zero in a linear regime, is responsible for negative values of power deposition near the sheath edge at high driving frequencies due to the highly nonlinear behavior of the discharge.
Skip Nav Destination
Kinetic simulation of a 50 mTorr capacitively coupled argon discharge over a range of frequencies and comparison to experiments
Article navigation
August 2023
Research Article|
August 16 2023
Kinetic simulation of a 50 mTorr capacitively coupled argon discharge over a range of frequencies and comparison to experiments
Special Collection:
Plasma Sources for Advanced Semiconductor Applications
Saurabh Simha
;
Saurabh Simha
a)
(Conceptualization, Data curation, Formal analysis, Investigation, Visualization, Writing – original draft)
1
School of Aeronautics and Astronautics, Purdue University
, West Lafayette, Indiana 47906, USA
a)Author to whom correspondence should be addressed: ssimha@purdue.edu
Search for other works by this author on:
Sarveshwar Sharma
;
Sarveshwar Sharma
(Conceptualization, Formal analysis, Investigation, Supervision, Visualization, Writing – review & editing)
2
Institute for Plasma Research and HBNI
, Gandhinagar 382428, India
Search for other works by this author on:
Alexander Khrabrov
;
Alexander Khrabrov
(Conceptualization, Data curation, Investigation, Methodology, Software, Validation)
3
Princeton Plasma Physics Laboratory
, Princeton, New Jersey 08536, USA
Search for other works by this author on:
Igor Kaganovich
;
Igor Kaganovich
(Funding acquisition, Software, Supervision, Writing – review & editing)
3
Princeton Plasma Physics Laboratory
, Princeton, New Jersey 08536, USA
Search for other works by this author on:
Jonathan Poggie
;
Jonathan Poggie
(Conceptualization, Data curation, Formal analysis, Investigation, Project administration, Resources, Supervision, Writing – review & editing)
1
School of Aeronautics and Astronautics, Purdue University
, West Lafayette, Indiana 47906, USA
Search for other works by this author on:
Sergey Macheret
Sergey Macheret
(Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Project administration, Supervision, Writing – review & editing)
1
School of Aeronautics and Astronautics, Purdue University
, West Lafayette, Indiana 47906, USA
Search for other works by this author on:
a)Author to whom correspondence should be addressed: ssimha@purdue.edu
Phys. Plasmas 30, 083509 (2023)
Article history
Received:
May 07 2023
Accepted:
July 27 2023
Citation
Saurabh Simha, Sarveshwar Sharma, Alexander Khrabrov, Igor Kaganovich, Jonathan Poggie, Sergey Macheret; Kinetic simulation of a 50 mTorr capacitively coupled argon discharge over a range of frequencies and comparison to experiments. Phys. Plasmas 1 August 2023; 30 (8): 083509. https://doi.org/10.1063/5.0157347
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00