The effect of driving frequency in the range of 13.56–73 MHz on electron energy distribution and electron heating modes in a 50 mTorr capacitively coupled argon plasma discharge is studied using 1D-3V particle-in-cell simulations. Calculated electron energy probability functions exhibit three distinct “temperatures” for low-, mid-, and high-energy electrons at all the studied driving frequencies. When compared to published experimental data, the calculated probability functions show a reasonable agreement for the energy range resolved in the measurements (about 2–10 eV). Discrepancies due to limitations in experimental energy resolution outside this range lead to differences between computational and experimental values of the electron number density determined from the distribution functions, and the predicted effective electron temperature is within 25% of experimental values. The impedance of the discharge is interpreted in terms of a homogeneous equivalent circuit model, and the driving frequency dependence of the inferred combined sheath thickness is found to obey a known, theoretically derived, power law. The average power transferred from the field to the electrons (electron heating) is computed, and a region of negative heating near the sheath edge, particularly at higher driving frequencies, is identified. Analysis of the electron momentum equation shows that electron inertia, which on temporal averaging would be zero in a linear regime, is responsible for negative values of power deposition near the sheath edge at high driving frequencies due to the highly nonlinear behavior of the discharge.

1.
C. G.
Lee
,
K. J.
Kanarik
, and
R. A.
Gottscho
, “
The grand challenges of plasma etching: A manufacturing perspective
,”
J. Phys. D
47
,
273001
(
2014
).
2.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
2005
).
3.
A.
Grill
,
Cold Plasma in Materials Fabrication
(
IEEE Press
,
New York
,
1994
), Vol.
151
.
4.
Y. P.
Raizer
,
M. N.
Shneider
, and
N. A.
Yatsenko
,
Radio-Frequency Capacitive Discharges
(
CRC Press
,
1995
).
5.
M.
Surendra
and
D. B.
Graves
, “
Capacitively coupled glow discharges at frequencies above 13.56 MHz
,”
Appl. Phys. Lett.
59
,
2091
2093
(
1991
).
6.
M. J.
Colgan
,
M.
Meyyappan
, and
D. E.
Murnick
, “
Very high-frequency capacitively coupled argon discharges
,”
Plasma Sources Sci. Technol.
3
,
181
(
1994
).
7.
V.
Vahedi
,
C. K.
Birdsall
,
M. A.
Lieberman
,
G.
DiPeso
, and
T. D.
Rognlien
, “
Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations
,”
Phys. Fluids B
5
,
2719
2729
(
1993
).
8.
H.
Ohtake
,
H.
Ishihara
,
T.
Fuse
,
A.
Koshiishi
, and
S.
Samukawa
, “
Highly selective and high rate SiO2 etching using argon-added C2F4/CF3 I plasma
,”
J. Vac. Sci. Technol. B
21
,
2142
2146
(
2003
).
9.
A.
Misra
,
J.
Sees
,
L.
Hall
,
R. A.
Levy
,
V. B.
Zaitsev
,
K.
Aryusook
,
C.
Ravindranath
,
V.
Sigal
,
S.
Kesari
, and
D.
Rufin
, “
Plasma etching of dielectric films using the non-global-warming gas CF3I
,”
Mater. Lett.
34
,
415
419
(
1998
).
10.
V. A.
Godyak
and
R. B.
Piejak
, “
Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz
,”
Phys. Rev. Lett.
65
,
996
(
1990
).
11.
E.
Abdel-Fattah
and
H.
Sugai
, “
Electron heating mode transition observed in a very high frequency capacitive discharge
,”
Appl. Phys. Lett.
83
,
1533
1535
(
2003
).
12.
E.
Abdel-Fattah
and
H.
Sugai
, “
Influence of excitation frequency on the electron distribution function in capacitively coupled discharges in argon and helium
,”
Jpn. J. Appl. Phys., Part 1
42
,
6569
(
2003
).
13.
E.
Abdel-Fattah
and
H.
Sugai
, “
Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas
,”
Phys. Plasmas
20
,
023501
(
2013
).
14.
S.
Sharma
,
N.
Sirse
,
P. K.
Kaw
,
M. M.
Turner
, and
A. R.
Ellingboe
, “
Effect of driving frequency on the electron energy distribution function and electron-sheath interaction in a low pressure capacitively coupled plasma
,”
Phys. Plasmas
23
,
110701
(
2016
).
15.
S.
Sharma
,
N.
Sirse
,
A.
Sen
,
M. M.
Turner
, and
A. R.
Ellingboe
, “
Influence of select discharge parameters on electric field transients triggered in collisionless very high frequency capacitive discharges
,”
Phys. Plasmas
26
,
103508
(
2019
).
16.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
,
A.
Sen
, and
M. M.
Turner
, “
Driving frequency effect on discharge parameters and higher harmonic generation in capacitive discharges at constant power densities
,”
J. Phys. D
54
,
055205
(
2020
).
17.
S.
Sharma
,
N.
Sirse
,
A.
Sen
,
J.-S.
Wu
, and
M. M.
Turner
, “
Electric field filamentation and higher harmonic generation in very high frequency capacitive discharges
,”
J. Phys. D
52
,
365201
(
2019
).
18.
S.
Sharma
,
N.
Sirse
,
M. M.
Turner
, and
A. R.
Ellingboe
, “
Influence of driving frequency on the metastable atoms and electron energy distribution function in a capacitively coupled argon discharge
,” arXiv:1805.00742 (
2018
).
19.
Y.-Y.
Wen
,
Y.-R.
Zhang
,
G.
Jiang
,
Y.-H.
Song
, and
Y.-N.
Wang
, “
Secondary electron effect on sustaining capacitively coupled discharges: A hybrid modeling investigation of the ionization rate
,”
AIP Adv.
9
,
055019
(
2019
).
20.
M. M.
Turner
, “
Pressure heating of electrons in capacitively coupled rf discharges
,”
Phys. Rev. Lett.
75
,
1312
(
1995
).
21.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
, and
M. M.
Turner
, “
Electric field nonlinearity in very high frequency capacitive discharges at constant electron plasma frequency
,”
Plasma Sources Sci. Technol.
29
,
045003
(
2020
).
22.
S.
Sharma
,
A.
Sen
,
N.
Sirse
,
M. M.
Turner
, and
A. R.
Ellingboe
, “
Plasma density and ion energy control via driving frequency and applied voltage in a collisionless capacitively coupled plasma discharge
,”
Phys. Plasmas
25
,
080705
(
2018
).
23.
M. M.
Turner
,
A.
Derzsi
,
Z.
Donko
,
D.
Eremin
,
S. J.
Kelly
,
T.
Lafleur
, and
T.
Mussenbrock
, “
Simulation benchmarks for low-pressure plasmas: Capacitive discharges
,”
Phys. Plasmas
20
,
013507
(
2013
).
24.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
E.
Schuengel
,
R. P.
Brinkmann
,
A.
Derzsi
,
I.
Korolov
,
A.
Donkó
, and
T.
Mussenbrock
, “
The effect of the driving frequency on the confinement of beam electrons and plasma density in low-pressure capacitive discharges
,”
Plasma Sources Sci. Technol.
24
,
024002
(
2015
).
25.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
Z.
Donko
,
R. P.
Brinkmann
, and
T.
Mussenbrock
, “
Disparity between current and voltage driven capacitively coupled radio frequency discharges
,”
Plasma Sources Sci. Technol.
27
,
125010
(
2018
).
26.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
27.
D.
Sydorenko
, “
Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields
,” Ph.D. thesis (
University of Saskatchewan
,
Saskatoon, Saskatchewan
,
2006
).
28.
J. P.
Sheehan
,
N.
Hershkowitz
,
I. D.
Kaganovich
,
H.
Wang
,
Y.
Raitses
,
E. V.
Barnat
,
B. R.
Weatherford
, and
D.
Sydorenko
, “
Kinetic theory of plasma sheaths surrounding electron-emitting surfaces
,”
Phys. Rev. Lett.
111
,
075002
(
2013
).
29.
S.
Patil
,
S.
Sharma
,
S.
Sengupta
,
A.
Sen
, and
I.
Kaganovich
, “
Electron bounce-cyclotron resonance in capacitive discharges at low magnetic fields
,”
Phys. Rev. Res.
4
,
013059
(
2022
).
30.
S.
Sharma
,
I. D.
Kaganovich
,
A. V.
Khrabrov
,
P.
Kaw
, and
A.
Sen
, “
Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field
,”
Phys. Plasmas
25
,
080704
(
2018
).
31.
S.
Sharma
,
S.
Patil
,
S.
Sengupta
,
A.
Sen
,
A.
Khrabrov
, and
I.
Kaganovich
, “
Investigating the effects of electron bounce-cyclotron resonance on plasma dynamics in capacitive discharges operated in the presence of a weak transverse magnetic field
,”
Phys. Plasmas
29
,
063501
(
2022
).
32.
J.
Carlsson
,
A.
Khrabrov
,
I.
Kaganovich
,
T.
Sommerer
, and
D.
Keating
, “
Validation and benchmarking of two particle-in-cell codes for a glow discharge
,”
Plasma Sources Sci. Technol.
26
,
014003
(
2016
).
33.
M. A.
Lieberman
,
J. P.
Booth
,
P.
Chabert
,
J. M.
Rax
, and
M. M.
Turner
, “
Standing wave and skin effects in large-area, high-frequency capacitive discharges
,”
Plasma Sources Sci. Technol.
11
,
283
(
2002
).
34.
G.
McCartney
,
T.
Hacker
, and
B.
Yang
, “
Empowering faculty: A campus cyberinfrastructure strategy for research communities
,”
Educause Rev.
49
(
4
) (
2014
), available at https://er.educause.edu/articles/2014/7/empowering-faculty-a-campus-cyberinfrastructure-strategy-for-research-communities.
35.
I. D.
Kaganovich
and
L. D.
Tsendin
, “
Low-pressure RF discharge in the free-flight regime
,”
IEEE Trans. Plasma Sci.
20
,
86
92
(
1992
).
36.
I. D.
Kaganovich
and
L. D.
Tsendin
, “
The space-time-averaging procedure and modeling of the RF discharge II. Model of collisional low-pressure RF discharge
,”
IEEE Trans. Plasma Sci.
20
,
66
75
(
1992
).
37.
S. V.
Berezhnoi
,
I. D.
Kaganovich
, and
L. D.
Tsendin
, “
Fast modelling of low-pressure radio-frequency collisional capacitively coupled discharge and investigation of the formation of a non-Maxwellian electron distribution function
,”
Plasma Sources Sci. Technol.
7
,
268
(
1998
).
38.
S. V.
Berezhnoi
,
I. D.
Kaganovich
, and
L. D.
Tsendin
, “
Generation of cold electrons in a low-pressure RF capacitive discharge as an analogue of a thermal explosion
,”
Plasma Phys. Rep.
24
,
556
563
(
1998
).
39.
D. A.
Schulenberg
,
I.
Korolov
,
Z.
Donkó
,
A.
Derzsi
, and
J.
Schulze
, “
Multi-diagnostic experimental validation of 1d3v PIC/MCC simulations of low pressure capacitive RF plasmas operated in argon
,”
Plasma Sources Sci. Technol.
30
,
105003
(
2021
).
40.
A.
Khomenko
and
S.
Macheret
, “
Capacitively coupled discharge as a tunable impedance element for RF systems
,”
J. Appl. Phys.
128
,
173301
(
2020
).
41.
A.
Khomenko
and
S.
Macheret
, “
Capacitively coupled radio-frequency discharge in alpha-mode as a variable capacitor
,”
J. Phys. D
52
,
445201
(
2019
).
42.
S.
Rauf
,
K.
Bera
, and
K.
Collins
, “
Power dynamics in a low pressure capacitively coupled plasma discharge
,”
Plasma Sources Sci. Technol.
19
,
015014
(
2009
).
43.
J.
Schulze
,
A.
Derzsi
,
K.
Dittmann
,
T.
Hemke
,
J.
Meichsner
, and
Z.
Donkó
, “
Ionization by drift and ambipolar electric fields in electronegative capacitive radio frequency plasmas
,”
Phys. Rev. Lett.
107
,
275001
(
2011
).
44.
S.
Sharma
,
N.
Sirse
, and
M. M.
Turner
, “
High frequency sheath modulation and higher harmonic generation in a low pressure very high frequency capacitively coupled plasma excited by sawtooth waveform
,”
Plasma Sources Sci. Technol.
29
,
114001
(
2020
).
45.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
, and
M. M.
Turner
, “
Plasma asymmetry and electron and ion energy distribution function in capacitive discharges excited by tailored waveforms
,”
J. Phys. D
55
,
275202
(
2022
).
46.
A. H.
Sato
and
M. A.
Lieberman
, “
Electron-beam probe measurements of electric fields in rf discharges
,”
J. Appl. Phys.
68
,
6117
6124
(
1990
).
47.
M. M.
Turner
and
M. B.
Hopkins
, “
Anomalous sheath heating in a low pressure rf discharge in nitrogen
,”
Phys. Rev. Lett.
69
,
3511
(
1992
).
48.
U.
Czarnetzki
,
D.
Luggenhölscher
, and
H. F.
Döbele
, “
Space and time resolved electric field measurements in helium and hydrogen RF-discharges
,”
Plasma Sources Sci. Technol.
8
,
230
(
1999
).
49.
T.
Gans
,
C. C.
Lin
,
V.
Schulz-Von Der Gathen
, and
H. F.
Döbele
, “
Phase-resolved emission spectroscopy of a hydrogen rf discharge for the determination of quenching coefficients
,”
Phys. Rev. A
67
,
012707
(
2003
).
50.
S.
Sharma
and
M. M.
Turner
, “
Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection
,”
Phys. Plasmas
20
,
073507
(
2013
).
51.
S.
Sharma
and
M. M.
Turner
, “
Simulation study of stochastic heating in single-frequency capacitively coupled discharges with critical evaluation of analytical models
,”
Plasma Sources Sci. Technol.
22
,
035014
(
2013
).
52.
J.
Schulze
,
Z.
Donkó
,
B. G.
Heil
,
D.
Luggenhölscher
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
, “
Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures
,”
J. Phys. D
41
,
105214
(
2008
).
53.
D.
O'Connell
,
T.
Gans
,
A.
Meige
,
P.
Awakowicz
, and
R. W.
Boswell
, “
Plasma ionization in low-pressure radio-frequency discharges. Part I: Optical measurements
,”
IEEE Trans. Plasma Sci.
36
,
1382
1383
(
2008
).
54.
A.
Meige
,
D.
O'Connell
,
T.
Gans
, and
R. W.
Boswell
, “
Plasma ionization in low-pressure radio-frequency discharges–Part II: Particle-in-cell simulation
,”
IEEE Trans. Plasma Sci.
36
,
1384
1385
(
2008
).
55.
S.
Sharma
and
M. M.
Turner
, “
Critical evaluation of analytical models for stochastic heating in dual-frequency capacitive discharges
,”
J. Phys. D
46
,
285203
(
2013
).
56.
S.
Sharma
and
M. M.
Turner
, “
Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation
,”
J. Phys. D
47
,
285201
(
2014
).
You do not currently have access to this content.