An ion beam field-aligned to the background guide field ( B 0 = 330 G) was observed in a reconnection experiment on the Large Plasma Device and, to the authors' knowledge, is the first experimental observation of its kind. Two kink-unstable flux ropes (L = 11 m, d = 7.6 cm) were made to collide, which allows magnetic reconnection to occur. Sub-Alfvénic ion beams with energies of up to 15 eV were then observed from measurements of the local ion energy distribution function. The beam ions do not appear to be heated. They were correlated with the collision of the ropes and appear to be energized by magnetic reconnection. The results and interpretation of the measurements are supported by three-dimensional gyrokinetic particle simulations of the merging flux ropes and electric field measurements from previous experiments [W. Gekelman et al., Astrophys. J. 853, 33 (2018)]. The mechanism behind the acceleration appears to be non-local.

1.
V. M.
Vasyliunas
, “
Theoretical models of magnetic field line merging
,”
Rev. Geophys.
13
,
303
336
, https://doi.org/10.1029/RG013i001p00303 (
1975
).
2.
J. F.
Drake
and
M.
Swisdak
, “
Ion heating and acceleration during magnetic reconnection relevant to the corona
,”
Space Sci. Rev.
172
,
227
240
(
2012
).
3.
J. T.
Dahlin
,
J. F.
Drake
, and
M.
Swisdak
, “
The mechanisms of electron heating and acceleration during magnetic reconnection
,”
Phys. Plasmas
21
,
092304
(
2014
).
4.
A.
Vaivads
,
Y.
Khotyaintsev
,
M.
André
, and
R. A.
Treumann
, “
Plasma waves near reconnection sites
,” in
Geospace Electromagnetic Waves and Radiation
(
Springer
,
2006
), pp.
251
269
.
5.
M.
Fujimoto
,
I.
Shinohara
, and
H.
Kojima
, “
Reconnection and waves: A review with a perspective
,”
Space Sci. Rev.
160
,
123
143
(
2011
).
6.
Y.
Ono
,
M.
Yamada
,
T.
Akao
,
T.
Tajima
, and
R.
Matsumoto
, “
Ion acceleration and direct ion heating in three-component magnetic reconnection
,”
Phys. Rev. Lett.
76
,
3328
(
1996
).
7.
S. C.
Hsu
,
T. A.
Carter
,
G.
Fiksel
,
H.
Ji
,
R. M.
Kulsrud
, and
M.
Yamada
, “
Experimental study of ion heating and acceleration during magnetic reconnection
,”
Phys. Plasmas
8
,
1916
1928
(
2001
).
8.
M. R.
Brown
, “
Experimental studies of magnetic reconnection
,”
Phys. Plasmas
6
,
1717
1724
(
1999
).
9.
M. R.
Brown
,
C. D.
Cothran
,
M.
Landreman
,
D.
Schlossberg
,
W. H.
Matthaeus
,
G.
Qin
,
V. S.
Lukin
, and
T.
Gray
, “
Energetic particles from three-dimensional magnetic reconnection events in the Swarthmore Spheromak Experiment
,”
Phys. Plasmas
9
,
2077
2084
(
2002
).
10.
D. I.
Pontin
, “
Three-dimensional magnetic reconnection regimes: A review
,”
Adv. Space Res.
47
,
1508
1522
(
2011
).
11.
D. H.
Mackay
and
A. A.
van Ballegooijen
, “
Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes
,”
Astrophys. J.
641
,
577
589
(
2006
).
12.
M.
Janvier
, “
Three-dimensional magnetic reconnection and its application to solar flares
,”
J. Plasma Phys.
83
,
535830101
(
2017
).
13.
D. D.
Ryutov
,
I.
Furno
,
T. P.
Intrator
,
S.
Abbate
, and
T.
Madziwa-Nussinov
, “
Phenomenological theory of the kink instability in a slender plasma column
,”
Phys. Plasmas
13
,
032105
(
2006
).
14.
B. W.
Lites
, “
Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments
,”
Astrophys. J.
622
,
1275
1291
(
2005
).
15.
T.
Li
,
E.
Priest
, and
R.
Guo
, “
Three-dimensional magnetic reconnection in astrophysical plasmas
,”
Proc. R. Soc. A
477
,
20200949
(
2021
).
16.
M.
Hoshino
,
T.
Mukai
,
T.
Yamamoto
, and
S.
Kokubun
, “
Ion dynamics in magnetic reconnection: Comparison between numerical simulation and Geotail observations
,”
J. Geophys. Res. Space Phys.
103
,
4509
4530
, https://doi.org/10.1029/97JA01785 (
1998
).
17.
T.
Nagai
,
I.
Shinohara
, and
S.
Zenitani
, “
Ion acceleration processes in magnetic reconnection: Geotail observations in the magnetotail
,”
J. Geophys. Res. Space Phys.
120
,
1766
1783
, https://doi.org/10.1002/2014JA020737 (
2015
).
18.
W.
Gekelman
,
P.
Pribyl
,
Z.
Lucky
,
M.
Drandell
,
D.
Leneman
,
J.
Maggs
,
S.
Vincena
,
B.
van Compernolle
,
S. K. P.
Tripathi
,
G.
Morales
et al, “
The upgraded large plasma device, a machine for studying frontier basic plasma physics
,”
Rev. Sci. Instrum.
87
,
025105
(
2016
).
19.
A. R.
Yeates
and
G.
Hornig
, “
Unique topological characterization of braided magnetic fields
,”
Phys. Plasmas
20
,
012102
(
2013
).
20.
C.
Prior
and
A. R.
Yeates
, “
Quantifying reconnective activity in braided vector fields
,”
Phys. Rev. E
98
,
013204
(
2018
).
21.
V. S.
Titov
,
T. G.
Forbes
,
E. R.
Priest
,
Z.
Mikić
, and
J. A.
Linker
, “
Slip-squashing factors as a measure of three-dimensional magnetic reconnection
,”
Astrophys. J.
693
,
1029
1044
(
2009
).
22.
E. E.
Lawrence
and
W.
Gekelman
, “
Identification of a quasiseparatrix layer in a reconnecting laboratory magnetoplasma
,”
Phys. Rev. Lett.
103
,
105002
(
2009
).
23.
W.
Gekelman
,
T.
De Haas
,
W.
Daughton
,
B.
Van Compernolle
,
T.
Intrator
, and
S.
Vincena
, “
Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions
,”
Phys. Rev. Lett.
116
,
235101
(
2016
).
24.
B.
Van Compernolle
and
W.
Gekelman
, “
Morphology and dynamics of three interacting kink-unstable flux ropes in a laboratory magnetoplasma
,”
Phys. Plasmas
19
,
102102
(
2012
).
25.
W.
Gekelman
,
T.
DeHaas
,
C.
Prior
, and
A.
Yeates
, “
Using topology to locate the position where fully three-dimensional reconnection occurs
,”
SN Appl. Sci.
2
,
1
15
(
2020
).
26.
S. W.
Tang
and
W.
Gekelman
, “
A retarding field energy analyzer for measuring the ion energy distribution function of a two flux rope experiment on the Large Plasma Device
,” (unpublished).
27.
E. T.
Everson
,
P.
Pribyl
,
C. G.
Constantin
,
A.
Zylstra
,
D.
Schaeffer
,
N. L.
Kugland
, and
C.
Niemann
, “
Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas
,”
Rev. Sci. Instrum.
80
,
113505
(
2009
).
28.
T.
DeHaas
,
W.
Gekelman
, and
B.
Van Compernolle
, “
Experimental study of a linear/non-linear flux rope
,”
Phys. Plasmas
22
,
082118
(
2015
).
29.
C. A.
Robertson
and
J. G.
Fryer
, “
Some descriptive properties of normal mixtures
,”
Scand. Actuar. J.
1969
,
137
146
.
30.
W.
Gekelman
,
T.
DeHaas
,
P.
Pribyl
,
S.
Vincena
,
B.
Van Compernolle
,
R.
Sydora
, and
S. K. P.
Tripathi
, “
Nonlocal Ohms law, plasma resistivity, and reconnection during collisions of magnetic flux ropes
,”
Astrophys. J.
853
,
33
(
2018
).
31.
W.
Gekelman
,
E.
Lawrence
,
A.
Collette
,
S.
Vincena
,
B.
Van Compernolle
,
P.
Pribyl
,
M.
Berger
, and
J.
Campbell
, “
Magnetic field line reconnection in the current systems of flux ropes and Alfvén waves
,”
Phys. Scr.
2010
,
014032
.
32.
T.
DeHaas
and
W.
Gekelman
, “
Helicity transformation under the collision and merging of two magnetic flux ropes
,”
Phys. Plasmas
24
,
072108
(
2017
).
33.
R. L.
Stenzel
,
W.
Gekelman
, and
N.
Wild
, “
Magnetic field line reconnection experiments, 4. Resistivity, heating, and energy flow
,”
J. Geophys. Res. Space Phys.
87
,
111
117
, https://doi.org/10.1029/JA087iA01p00111 (
1982
).
34.
E. N.
Parker
, “
Acceleration of cosmic rays in solar flares
,”
Phys. Rev.
107
,
830
(
1957
).
35.
A. G.
Emslie
, “
An interacting loop model of solar flare bursts
,”
Astrophys. Lett.
22
,
171
177
(
1981
).
36.
M.
Yamada
,
J.
Yoo
,
J.
Jara-Almonte
,
H.
Ji
,
R. M.
Kulsrud
, and
C. E.
Myers
, “
Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma
,”
Nat. Commun.
5
,
4774
(
2014
).
37.
M. J.
Aschwanden
,
A.
Caspi
,
C. M. S.
Cohen
,
G.
Holman
,
J.
Jing
,
M.
Kretzschmar
,
E. P.
Kontar
,
J. M.
McTiernan
,
R. A.
Mewaldt
,
A.
O'Flannagain
et al, “
Global energetics of solar flares. V. Energy closure in flares and coronal mass ejections
,”
Astrophys. J.
836
,
17
(
2017
).
38.
R. D.
Sydora
, “
Nonlinear dynamics of small-scale magnetic islands in high temperature plasmas
,”
Phys. Plasmas
8
,
1929
1934
(
2001
).
39.
R. D.
Sydora
,
G. J.
Morales
,
J. E.
Maggs
, and
B. V.
Compernolle
, “
Three-dimensional gyrokinetic simulation of the relaxation of a magnetized temperature filament
,”
Phys. Plasmas
22
,
102303
(
2015
).
40.
J. P.
Eastwood
,
M. V.
Goldman
,
H.
Hietala
,
D. L.
Newman
,
R.
Mistry
, and
G.
Lapenta
, “
Ion reflection and acceleration near magnetotail dipolarization fronts associated with magnetic reconnection
,”
J. Geophys. Res. Space Phys.
120
,
511
525
, https://doi.org/10.1002/2014JA020516 (
2015
).
41.
R.-F.
Lottermoser
,
M.
Scholer
, and
A. P.
Matthews
, “
Ion kinetic effects in magnetic reconnection: Hybrid simulations
,”
J. Geophys. Res. Space Phys.
103
,
4547
4559
, https://doi.org/10.1029/97JA01872 (
1998
).
42.
P.
Ricci
,
J. U.
Brackbill
,
W.
Daughton
, and
G.
Lapenta
, “
Collisionless magnetic reconnection in the presence of a guide field
,”
Phys. Plasmas
11
,
4102
4114
(
2004
).
43.
J. D.
Huba
, “
Hall magnetic reconnection: Guide field dependence
,”
Phys. Plasmas
12
,
012322
(
2005
).
44.
G.
Lapenta
,
S.
Markidis
,
A.
Divin
,
M.
Goldman
, and
D.
Newman
, “
Scales of guide field reconnection at the hydrogen mass ratio
,”
Phys. Plasmas
17
,
082106
(
2010
).
45.
P. L.
Pritchett
and
F. V.
Coroniti
, “
Three-dimensional collisionless magnetic reconnection in the presence of a guide field
,”
J. Geophys. Res. Space Phys.
109
,
120033239
, https://dx.doi.org/10.1029/2003JA009999 (
2004
).
46.
Y.-H.
Liu
,
W.
Daughton
,
H.
Karimabadi
,
H.
Li
, and
V.
Roytershteyn
, “
Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection
,”
Phys. Rev. Lett.
110
,
265004
(
2013
).
47.
P. A.
Cassak
,
Y.-H.
Liu
, and
M. A.
Shay
, “
A review of the 0.1 reconnection rate problem
,”
J. Plasma Phys.
83
,
715830501
(
2017
).
48.
A.
Zeiler
,
D.
Biskamp
,
J. F.
Drake
,
B. N.
Rogers
,
M. A.
Shay
, and
M.
Scholer
, “
Three-dimensional particle simulations of collisionless magnetic reconnection
,”
J. Geophys. Res. Space Phys.
107
,
SMP–6
, https://doi.org/10.1029/2001JA000287 (
2002
).
49.
F. V.
Coroniti
and
A.
Eviatar
, “
Magnetic field reconnection in a collisionless plasma
,”
Astrophys. J. Suppl. Ser.
33
,
189
210
(
1977
).
50.
P.
Petkaki
and
M. P.
Freeman
, “
Nonlinear dependence of anomalous ion-acoustic resistivity on electron drift velocity
,”
Astrophys. J.
686
,
686
(
2008
).
51.
R. L.
Stenzel
and
W.
Gekelman
, “
Diffusion and scattering of test particles in a turbulent plasma
,”
Phys. Rev. Lett.
40
,
550
(
1978
).
52.
W.
Gekelman
and
R. L.
Stenzel
, “
Ion sound turbulence in a magnetoplasma
,”
Phys. Fluids
21
,
2014
2023
(
1978
).
53.
W.
Gekelman
,
S. W.
Tang
,
T.
DeHaas
,
S.
Vincena
,
P.
Pribyl
, and
R.
Sydora
, “
Spiky electric and magnetic field structures in flux rope experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
18239
18244
(
2018
).
54.
B.
Lavraud
,
R.
Kieokaew
,
N.
Fargette
,
P.
Louarn
,
A.
Fedorov
,
N.
André
,
G.
Fruit
,
V.
Génot
,
V.
Réville
,
A. P.
Rouillard
,
I.
Plotnikov
,
E.
Penou
,
A.
Barthe
,
L.
Prech
,
C. J.
Owen
,
R.
Bruno
,
F.
Allegrini
,
M.
Berthomier
,
D.
Kataria
,
S.
Livi
,
J. M.
Raines
,
R.
D'Amicis
,
J. P.
Eastwood
,
C.
Froment
,
R.
Laker
,
M.
Maksimovic
,
F.
Marcucci
,
S.
Perri
,
D.
Perrone
,
T. D.
Phan
,
D.
Stansby
,
J.
Stawarz
,
S.
Toledo-Redondo
,
A.
Vaivads
,
D.
Verscharen
,
I.
Zouganelis
,
V.
Angelini
,
V.
Evans
,
T. S.
Horbury
, and
H.
O'Brien
, “
Magnetic reconnection as a mechanism to produce multiple thermal proton populations and beams locally in the solar wind
,”
Astron. Astrophys.
656
,
A37
(
2021
).
You do not currently have access to this content.