Measurements of parameters of small-size plasmas are very challenging because many traditional diagnostic approaches cannot be used. Constructive coherent microwave scattering (CMS) offers a convenient diagnostic solution for such small plasmas. This work reviews the development and applications of constructive coherent microwave scattering by the Electric Propulsion and Plasma Laboratory at Purdue University. It presents fundamentals of CMS with an emphasis on Thomson, collisional, and Rayleigh scattering in short, thin, unmagnetized plasma media. Additionally, we review examples of CMS application for diagnostics of temporally resolved plasma dynamics and electron decay, photoionization rates, electron momentum-transfer collision frequencies, and number densities of selective species in gaseous mixtures. These applications are relevant for various research fields including strong field and femtosecond filamentation physics, plasma-assisted ignition and combustion, and combustion and spacecraft electric propulsion diagnostics.

1.
S. H.
Glenzer
,
D. H.
Froula
,
N. C.
Luhmann
, and
J.
Sheffield
,
Plasma Scattering of Electromagnetic Radiation
(
Academic Press
,
2011
).
2.
M. N.
Shneider
and
R. B.
Miles
, “
Microwave diagnostics of small plasma objects
,”
J. Appl. Phys.
98
(
3
),
033301
(
2005
).
3.
A.
Shashurin
,
M. N.
Shneider
,
A.
Dogariu
,
R. B.
Miles
, and
M.
Keidar
, “
Temporally-resolved measurement of electron density in small atmospheric plasmas
,”
Appl. Phys. Lett.
96
(
17
),
171502
(
2010
).
4.
A.
Sharma
,
M. N.
Slipchenko
,
M. N.
Shneider
,
X.
Wang
,
K. A.
Rahman
, and
A.
Shashurin
, “
Counting the electrons in a multiphoton ionization by elastic scattering of microwaves
,”
Sci. Rep.
8
(
1
),
2874
(
2018
).
5.
A.
Sharma
,
M. N.
Slipchenko
,
K. A.
Rahman
,
M. N.
Shneider
, and
A.
Shashurin
, “
Direct measurement of electron numbers created at near-infrared laser-induced ionization of various gases
,”
J. Appl. Phys.
125
(
19
),
193301
(
2019
).
6.
C. A.
Galea
,
M. N.
Shneider
,
M.
Gragston
, and
Z.
Zhang
, “
Coherent microwave scattering from xenon resonance-enhanced multiphoton ionization-initiated plasma in air
,”
J. Appl. Phys.
127
(
5
),
053301
(
2020
).
7.
Y.
Wu
,
Z.
Zhang
,
N.
Jiang
,
S.
Roy
, and
J. R.
Gord
, “
Resonant- and avalanche-ionization amplification of laser-induced plasma in air
,”
J. Appl. Phys.
116
(
14
),
143304
(
2014
).
8.
M. N.
Shneider
,
Z.
Zhang
, and
R. B.
Miles
, “
Plasma induced by resonance enhanced multiphoton ionization in inert gas
,”
J. Appl. Phys.
102
(
12
),
123103
(
2007
).
9.
Y.
Wu
,
J. C.
Sawyer
,
L.
Su
, and
Z.
Zhang
, “
Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown
,”
J. Appl. Phys.
119
(
17
),
173303
(
2016
).
10.
X.
Wang
,
P.
Stockett
,
R.
Jagannath
,
S.
Bane
, and
A.
Shashurin
, “
Time-resolved measurements of electron density in nanosecond pulsed plasmas using microwave scattering
,”
Plasma Sources Sci. Technol.
27
(
7
),
07LT02
(
2018
).
11.
X.
Wang
,
A.
Patel
, and
A.
Shashurin
, “
Initial transient stage of pin-to-pin nanosecond repetitively pulsed discharges in air
,”
J. Appl. Phys.
132
,
013301
(
2022
).
12.
A.
Ranjan
,
A.
Patel
,
X.
Wang
, and
A.
Shashurin
, “
Thomson microwave scattering for diagnostics of small plasma objects enclosed within glass tubes
,”
Rev. Sci. Instrum.
93
(
11
),
113541
(
2022
).
13.
X.
Wang
,
A.
Patel
,
S.
Bane
, and
A.
Shashurin
, “
Experimental study of atmospheric pressure single-pulse nanosecond discharge in pin-to-pin configuration
,”
J. Appl. Phys.
130
(
10
),
103303
(
2021
).
14.
A.
Patel
,
C.
Gollner
,
R.
Jutas
,
V.
Shumakova
,
M. N.
Shneider
,
A.
Pugzlys
,
A.
Baltuska
, and
A.
Shashurin
, “
Ionization rate and plasma dynamics at 3.9 micron femtosecond photoionization of air
,”
Phys. Rev. E
106
(
5
),
055210
(
2022
).
15.
A.
Dogariu
,
M. N.
Shneider
, and
R. B.
Miles
, “
Versatile radar measurement of the electron loss rate in air
,”
Appl. Phys. Lett.
103
(
22
),
224102
(
2013
).
16.
A.
Dogariu
and
R. B.
Miles
, “
Detecting localized trace species in air using radar resonance-enhanced multi-photon ionization
,”
Appl. Opt.
50
(
4
),
A68
A73
(
2011
).
17.
Z.
Zhang
,
M. N.
Shneider
,
S. H.
Zaidi
, and
R. B.
Miles
, AIAA Paper No. 2007-4375,
2007
.
18.
A.
Sharma
,
E. L.
Braun
,
A. R.
Patel
,
K.
Arafat Rahman
,
M. N.
Slipchenko
,
M. N.
Shneider
, and
A.
Shashurin
, “
Diagnostics of CO concentration in gaseous mixtures at elevated pressures by resonance enhanced multi-photon ionization and microwave scattering
,”
J. Appl. Phys.
128
(
14
),
141301
(
2020
).
19.
M. N.
Shneider
,
Z.
Zhang
, and
R. B.
Miles
, “
Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures
,”
J. Appl. Phys.
104
(
2
),
23302
(
2008
).
20.
Y.
Wu
,
Z.
Zhang
,
T. M.
Ombrello
, and
V. R.
Katta
, “
Quantitative radar REMPI measurements of methyl radicals in flames at atmospheric pressure
,”
Appl. Phys. B
111
,
391
397
(
2013
).
21.
Y.
Wu
,
Z.
Zhang
, and
S. F.
Adams
, “
O2 rotational temperature measurements by coherent microwave scattering from REMPI
,”
Chem. Phys. Lett.
513
(
4–6
),
191
194
(
2011
).
22.
C. A.
Galea
,
M. N.
Shneider
,
A.
Dogariu
, and
R. B.
Miles
, “
Magnetically induced depolarization of microwave scattering from a laser-generated plasma
,”
Phys. Rev. Appl.
12
(
3
),
034055
(
2019
).
23.
A.
Shashurin
,
M. N.
Shneider
,
A.
Dogariu
,
R. B.
Miles
, and
M.
Keidar
, “
Temporal behavior of cold atmospheric plasma jet
,”
Appl. Phys. Lett.
94
(
23
),
231504
(
2009
).
24.
A.
Shashurin
and
M.
Keidar
, “
Experimental approaches for studying non-equilibrium atmospheric plasma jets
,”
Phys. Plasmas
22
(
12
),
122002
(
2015
).
25.
A.
Shashurin
,
Encyclopedia of Plasma Technology
,
1st ed
., edited by
J.
Shohet
(
Taylor & Francis
,
New York
,
2016
).
26.
A.
Shashurin
,
D.
Scott
,
T.
Zhuang
,
J.
Canady
,
I. I.
Beilis
, and
M.
Keidar
, “
Electric discharge during electrosurgery
,”
Sci. Rep.
4
,
9946
(
2015
).
27.
R. L.
Stenzel
, “
Microwave resonator probe for localized density measurements in weakly magnetized plasmas
,”
Rev. Sci. Instrum.
47
(
5
),
603
607
(
1976
).
28.
E. W.
Lochte-Holtgreven
,
Plasma Diagnostics
(
North-Holland Publishing Company
,
Amsterdam
,
1968
).
29.
X. P.
Lu
and
M.
Laroussi
, “
Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer
,”
Appl. Phys. Lett.
92
(
5
),
051501
(
2008
).
30.
A. R.
Patel
,
A.
Ranjan
,
X.
Wang
,
M. N.
Slipchenko
,
M. N.
Shneider
, and
A.
Shashurin
, “
Thomson and collisional regimes of in-phase coherent microwave scattering off gaseous microplasmas
,”
Sci. Rep.
11
(
1
),
23389
(
2021
).
31.
J. D.
Jackson
,
Classical Electrodynamics
,
3rd ed
. (
Wiley
,
1998
).
32.
H. A.
Lorentz
,
The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat
(
Leipzig
,
New York
,
1916
).
33.
D. M.
Pozar
,
Microwave Engineering
(
Wiley
,
2012
).
34.
M. E.
Peskin
and
D. V.
Schroeder
,
An Introduction to Quantum Field Theory
(
Addison-Wesley
,
1995
).
35.
O.
Klein
and
T.
Nishina
, “
Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac
,”
Z. Phys.
52
(
11–12
),
853
868
(
1929
).
36.
X.
Wang
,
A. R.
Patel
, and
A.
Shashurin
, “
Combined microwave and laser Rayleigh scattering diagnostics for pin-to-pin nanosecond discharges
,”
J. Appl. Phys
129
,
183302
(
2021
).
37.
A. R.
Patel
,
X.
Wang
,
E. L.
Braun
,
A.
Ranjan
,
M. N.
Slipchenko
,
S.
Macheret
,
M. N.
Shneider
, and
A.
Shashurin
, “
Electron momentum-transfer collision frequency measurements in small plasma objects via coherent microwave scattering
,”
Plasma Sources Sci. Technol.
31
(
11
),
114011
(
2022
).
38.
A.
Patel
,
A.
Ranjan
,
X.
Wang
,
M.
Slipchenko
,
M. N.
Shneider
, and
A.
Shashurin
, AIAA Paper No. 2022-1748,
2022
.
39.
X.
Wang
,
A.
Ranjan
,
M. N.
Shneider
, and
A.
Shashurin
, AIAA Paper No. 2019-3250,
2019
.
40.
A.
Starikovskiy
and
N.
Aleksandrov
, “
Plasma-assisted ignition and combustion
,”
Prog. Energy Combust. Sci.
39
(
1
),
61
(
2013
).
41.
J. B.
Michael
,
A.
Dogariu
,
M. N.
Shneider
, and
R. B.
Miles
, “
Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures
,”
J. Appl. Phys.
108
(
9
),
093308
(
2010
).
42.
Y.
Ju
and
W.
Sun
, “
Plasma assisted combustion: Dynamics and chemistry
,”
Prog. Energy Combust. Sci.
48
,
21
83
(
2015
).
43.
N. A.
Popov
, “
Kinetics of plasma-assisted combustion: Effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures
,”
Plasma Sources Sci. Technol.
25
,
043002
(
2016
).
44.
F.
Krausz
and
M.
Ivanov
, “
Attosecond physics
,”
Rev. Mod. Phys.
81
(
1
),
163
(
2009
).
45.
A.
Couairon
and
A.
Mysyrowicz
, “
Femtosecond filamentation in transparent media
,”
Phys. Rep.
441
(
2
),
47
(
2007
).
46.
S. L.
Chin
,
Femtosecond Laser Filamentation
(
Springer Science
,
2010
).
47.
A. R.
Patel
, “
Constructive (coherent) elastic microwave scattering-based plasma diagnostics and applications to photoionization
,” Ph.D. dissertation (Purdue University,
2022
).
48.
W.
Kim
,
M.
Godfrey Mungal
, and
M. A.
Cappelli
, “
The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames
,”
Combust Flame
157
(
2
),
374
383
(
2010
).
49.
Q. L. L.
Pham
,
D. A.
Lacoste
, and
C. O.
Laux
, “
Stabilization of a premixed methane-air flame using nanosecond repetitively pulsed discharges
,”
IEEE Trans. Plasma Sci.
39
(
11 Pt. 1
),
2264
2265
(
2011
).
50.
G. L.
Pilla
,
D. A.
Lacoste
,
D.
Veynante
, and
C. O.
Laux
, “
Stabilization of a swirled propane-air flame using a nanosecond repetitively pulsed plasma
,”
IEEE Trans. Plasma Sci.
36
(
4 Pt. 1
),
940
941
(
2008
).
51.
M.
Nishihara
,
K.
Takashima
,
J. W.
Rich
, and
I. v
Adamovich
, “
Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge
,”
Phys. Fluids
23
(
6
),
066101
(
2011
).
52.
D. V.
Roupassov
,
A. A.
Nikipelov
,
M. M.
Nudnova
, and
A. Y.
Starikovskii
, “
Flow separation control by plasma actuator with nanosecond pulse periodic discharge
,” AIAA Paper No. 2008-1367,
2008
.
53.
J.
Little
,
K.
Takashima
,
M.
Nishihara
,
I. V.
Adamovich
, and
M.
Samimy
, “
Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators
,”
AIAA J.
50
(
2
),
350
365
(
2012
).
54.
S.
Samukawa
,
M.
Hori
,
S.
Rauf
,
K.
Tachibana
,
P.
Bruggeman
,
G.
Kroesen
,
J. C.
Whitehead
,
A. B.
Murphy
,
A. F.
Gutsol
,
S.
Starikovskaia
,
U.
Kortshagen
,
J. P.
Boeuf
,
T. J.
Sommerer
,
M. J.
Kushner
,
U.
Czarnetzki
, and
N.
Mason
, “
The 2012 plasma roadmap
,”
J. Phys. D
45
(
25
),
253001
(
2012
).
55.
A.
Fridman
and
L. A.
Kennedy
,
Plasma Physics and Engineering
(
CRC Press
,
2021
).
56.
V.
Podolsky
,
A.
Semnani
, and
S. O.
Macheret
, “
Experimental and numerical studies of a tunable plasma antenna sustained by RF power
,”
IEEE Trans. Plasma Sci.
48
(
10
),
3524
3534
(
2020
).
57.
B.
Wang
and
M. A.
Cappelli
, “
A tunable microwave plasma photonic crystal filter
,”
Appl. Phys. Lett.
107
(
17
),
171107
(
2015
).
58.
B.
Wang
and
M. A.
Cappelli
, “
A plasma photonic crystal bandgap device
,”
Appl. Phys. Lett.
108
(
16
),
161101
(
2016
).
59.
A.
Semnani
,
S. O.
Macheret
, and
D.
Peroulis
, in
2016 IEEE International Conference on Plasma Science (ICOPS)
(
IEEE
,
2016
).
60.
P.
Polynkin
and
Y.
Cheng
,
Air Lasing
, Springer Series in Optical Sciences (
Springer
,
2018
).
61.
L. V.
Keldysh
, “
Ionization in the field of a strong electromagnetic wave
,”
Sov. Phys. JETP
20
(
5
),
1307
1314
(
1965
).
62.
A.
Perelomov
,
V.
Popov
, and
M.
Terent'ev
, “
Ionization of Atoms in an Alternating Electric Field
,”
Sov. J. Exp. Theor. Phys.
23
(
5
),
924
(
1966
).
63.
M. V.
Ammosov
,
N. B.
Delone
, and
V. P.
Krainov
, “
Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field
,”
Sov. Phys.-JETP
664
,
138
(
1986
).
64.
S.
Augst
,
D. D.
Meyerhofer
,
D.
Strickland
, and
S. L.
Chint
, “
Laser ionization of noble gases by Coulomb-barrier suppression
,”
J. Opt. Soc. Am. B
8
(
4
),
858
(
1991
).
65.
J. K.
Wahlstrand
,
S.
Zahedpour
,
A.
Bahl
,
M.
Kolesik
, and
H. M.
Milchberg
, “
Bound-electron nonlinearity beyond the ionization threshold
,”
Phys. Rev. Lett.
120
(
18
),
183901
(
2018
).
66.
X. M.
Tong
,
Z. X.
Zhao
, and
C. D.
Lin
, “
Theory of molecular tunneling ionization
,”
Phys. Rev. A
66
(
3
),
033402
(
2002
).
67.
A.
Talebpour
,
J.
Yang
, and
S. L.
Chin
, “
Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: Sapphire laser pulse
,”
Opt. Commun.
163
,
29
(
1999
).
68.
T. D. G.
Walsh
,
F. A.
Ilkov
,
J. E.
Decker
, and
S. L.
Chin
, “
The tunnel ionization of atoms, diatomic and triatomic molecules using intense 10.6 mu m radiation
,”
J. Phys. B
27
(
16
),
3767
(
1994
).
69.
K.
Mishima
,
M.
Hayashi
,
J.
Yi
,
S. H.
Lin
,
H. L.
Selzle
, and
E. W.
Schlag
, “
Generalization of Keldysh's theory
,”
Phys. Rev. A
66
(
3
),
033401
(
2002
).
70.
A.
Khomenko
and
S.
Macheret
, “
Diagnostics of small plasma discharges using probing in wide range of microwave frequencies
,”
Appl. Phys. Lett.
116
(
2
),
023501
(
2020
).
71.
A. R.
Patel
,
S. L. B.
Karunarathne
,
N.
Babusis
, and
A.
Shashurin
, “
The application of coherent microwave scattering and multiphoton ionization for diagnostics of electric propulsion systems
,”
J. Phys. D
56
,
185202
(
2023
).
You do not currently have access to this content.