The high recycling regime of a divertor is characterized by high plasma particle fluxes and low temperature at the target, where a strong hydrogen recirculation loop exists. Atomic processes in the high recycling regime, such as ion–neutral friction and radiation, can affect the plasma momentum and energy transport in the sheath transition region. Here, the plasma–sheath transition near a high recycling wall is investigated. The Bohm speed, which constraints the ion exit flow speed, is evaluated from a transport model that accounts for the effect of the anisotropic transport and atomic collisions in the transition layer. A first principles kinetic code vector particle-in-cell with the atomic collision package is used to investigate a 1D self-consistent slab plasma with a high recycling boundary for the tungsten and carbon divertors. The results demonstrate the accuracy of the Bohm speed model in predicting the ion exit flow speed in the transition region, as well as the reduction of the Bohm speed due to the ion–neutral friction. The effect of different wall materials, tungsten, and carbon, on the Bohm speed and near-wall plasma profile is shown.

1.
L.
Tonks
and
I.
Langmuir
, “
A general theory of the plasma of an arc
,”
Phys. Rev.
34
,
876
922
(
1929
).
2.
I.
Langmuir
, “
The interaction of electron and positive ion space charges in cathode sheaths
,”
Phys. Rev.
33
,
954
989
(
1929
).
3.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
,
2nd ed
. (
Wiley-Interscience
,
2005
).
4.
P. C.
Stangeby
,
The Plasma Boundary of Magnetic Fusion Devices
(
Taylor & Francis
,
2000
).
5.
M. D.
Campanell
, “
Negative plasma potential relative to electron-emitting surfaces
,”
Phys. Rev. E
88
,
033103
(
2013
).
6.
N. S.
Krasheninnikova
and
X.
Tang
, “
Equilibrium properties of the plasma sheath with a magnetic field parallel to the wall
,”
Phys. Plasmas
17
,
063508
(
2010
).
7.
N. S.
Krasheninnikova
,
X.
Tang
, and
V. S.
Roytershteyn
, “
Scaling of the plasma sheath in a magnetic field parallel to the wall
,”
Phys. Plasmas
17
,
057103
(
2010
).
8.
D.
Bohm
, “
The characteristics of electrical discharges in magnetic fields
,” in
Qualitative Description of the Arc Plasma in a Magnetic Field
, edited by
A.
Guthrie
and
R. K.
Wakerling
(
McGraw-Hill
,
New York, NY
,
1949
).
9.
E. R.
Harrison
and
W. B.
Thompson
, “
The low pressure plane symmetric discharge
,”
Proc. Phys. Soc.
74
,
145
(
1959
).
10.
K.-U.
Riemann
, “
The Bohm criterion and sheath formation
,”
J. Phys. D
24
,
493
518
(
1991
).
11.
X.-Z.
Tang
and
Z.
Guo
, “
Sheath energy transmission in a collisional plasma with collisionless sheath
,”
Phys. Plasmas
22
,
100703
(
2015
).
12.
X.-Z.
Tang
and
Z.
Guo
, “
Kinetic model for the collisionless sheath of a collisional plasma
,”
Phys. Plasmas
23
,
083503
(
2016
).
13.
K.-U.
Riemann
, “
The Bohm criterion and boundary conditions for a multicomponent system
,”
IEEE Trans. Plasma Sci.
23
,
709
716
(
1995
).
14.
X.-Z.
Tang
and
Z.
Guo
, “
Critical role of electron heat flux on Bohm criterion
,”
Phys. Plasmas
23
,
120701
(
2016
).
15.
Y.
Li
,
B.
Srinivasan
,
Y.
Zhang
, and
X.-Z.
Tang
, “
Bohm criterion of plasma sheaths away from asymptotic limits
,”
Phys. Rev. Lett.
128
,
085002
(
2022
).
16.
Y.
Li
,
B.
Srinivasan
,
Y.
Zhang
, and
X.-Z.
Tang
, “
Transport physics dependence of Bohm speed in presheath–sheath transition
,”
Phys. Plasmas
29
,
113509
(
2022
).
17.
V. A.
Godyak
and
N.
Sternberg
, “
Smooth plasma-sheath transition in a hydrodynamic model
,”
IEEE Trans. Plasma Sci.
18
,
159
168
(
1990
).
18.
R. N.
Franklin
, “
You cannot patch active plasma and collisionless sheath
,”
IEEE Trans. Plasma Sci.
30
,
352
356
(
2002
).
19.
I. D.
Kaganovich
, “
How to patch active plasma and collisionless sheath: A practical guide
,”
Phys. Plasmas
9
,
4788
4793
(
2002
).
20.
V.
Godyak
and
N.
Sternberg
, “
Good news: You can patch active plasma and collisionless sheath
,”
IEEE Trans. Plasma Sci.
31
,
303
(
2003
).
21.
K.-U.
Riemann
, “
Kinetic analysis of the collisional plasma–sheath transition
,”
J. Phys. D
36
,
2811
2820
(
2003
).
22.
R. N.
Franklin
, “
Where is the sheath edge?
,”
J. Phys. D
37
,
1342
1345
(
2004
).
23.
K.-U.
Riemann
, “
Comment on ‘kinetic theory of the presheath and the Bohm criterion’
,”
Plasma Sources Sci. Technol.
21
,
068001
(
2012
).
24.
S. D.
Baalrud
and
C. C.
Hegna
, “
Reply to comment on ‘kinetic theory of the presheath and the Bohm criterion’
,”
Plasma Sources Sci. Technol.
21
,
068002
(
2012
).
25.
H.
Valentini
, “
Bohm criterion for the collisional sheath
,”
Phys. Plasmas
3
,
1459
1461
(
1996
).
26.
S.
Cohen
,
K.
Werley
,
M.
Harrison
,
V.
Pistunovitch
,
A.
Kukushkin
,
S.
Krashenninikov
,
M.
Sugihara
,
L.
Perkins
,
R.
Bulmer
,
D.
Post
et al, “
The status of ITER divertor design concepts
,”
J. Nucl. Mater.
196–198
,
50
58
(
1992
).
27.
S. I.
Krasheninnikov
,
A. S.
Kukushkin
, and
A. A.
Pshenov
, “
Divertor plasma detachment
,”
Phys. Plasmas
23
,
055602
(
2016
).
28.
K.-U.
Riemann
, “
The influence of collisions on the plasma sheath transition
,”
Phys. Plasmas
4
,
4158
4166
(
1997
).
29.
S.
Krasheninnikov
,
A.
Smolyakov
, and
A.
Kukushkin
,
On the Edge of Magnetic Fusion Devices
(
Springer
,
2020
).
30.
K.-U.
Riemann
, “
Kinetic theory of the plasma sheath transition in a weakly ionized plasma
,”
Phys. Fluids
24
,
2163
2172
(
1981
).
31.
S.
Kuhn
,
K.-U.
Riemann
,
N.
Jelić
,
D.
Tskhakaya
, Sr.
,
D.
Tskhakaya
, Jr.
, and
M.
Stanojević
, “
Link between fluid and kinetic parameters near the plasma boundary
,”
Phys. Plasmas
13
,
013503
(
2006
).
32.
B. B. K.
Bowers
,
B. J.
Albright
, and
T.
Kwan
, “
Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation
,”
Phys. Plasmas
15
,
055703
(
2008
).
33.
R.
Janev
,
D.
Reiter
, and
U.
Samm
, “
Collision processes in low-temperature hydrogen plasmas
,” Technical Report No. 4105 (Forschungs-zentrum Jülich,
Germany
,
2003
).
34.
B.
Lehnert
, “
Screening of a high-density plasma from neutral gas penetration
,”
Nucl. Fusion
8
,
173
(
1968
).
35.
W.
Hsu
,
M.
Yamada
, and
P.
Barrett
, “
Experimental simulation of the gaseous tokamak divertor
,”
Phys. Rev. Lett.
49
,
1001
(
1982
).
36.
X. Z.
Tang
, “
Kinetic magnetic dynamo in a sheath-limited high-temperature and low-density plasma
,”
Plasma Phys. Controlled Fusion
53
,
082002
(
2011
).
37.
G. F.
Chew
,
M. L.
Goldberger
,
F. E.
Low
, and
S.
Chandrasekhar
, “
The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions
,”
Proc. R. Soc. London, Ser. A
236
,
112
118
(
1956
).
38.
R. N.
Franklin
and
J. R.
Ockendon
, “
Asymptotic matching of plasma and sheath in an active low pressure discharge
,”
J. Plasma Phys.
4
,
371
385
(
1970
).
39.
S.
Krasheninnikov
,
A.
Kukushkin
,
V.
Pistunovich
, and
V.
Pozharov
, “
Self-sustained oscillations in the divertor plasma
,”
Nucl. Fusion
27
,
1805
(
1987
).
40.
A. Y.
Pigarov
, “
Radiative detached divertor with acceptable separatrix zeff
,”
Phys. Plasmas
24
,
102521
(
2017
).
41.
W.
Eckstein
, “
Reflection (backscattering)
,”
Bull. Russ. Acad. Sci.
74
,
141
148
(
2010
).
42.
K.
Nanbu
, “
Probability theory of electron-molecule, ion-molecule, molecule-molecule, and coulomb collisions for particle modeling of materials processing plasmas and cases
,”
IEEE Trans. Plasma Sci.
28
,
971
990
(
2000
).
43.
V.
Vahedi
and
M.
Surendra
, “
A Monte Carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges
,”
Comput. Phys. Commun.
87
,
179
198
(
1995
).
44.
R. W.
Schunk
, “
Mathematical structure of transport equations for multispecies flows
,”
Rev. Geophys.
15
,
429
445
, https://doi.org/10.1029/RG015i004p00429 (
1977
).
You do not currently have access to this content.