A recent experiment conducted on the National Ignition Facility (NIF) described in the study by Abu-Shawareb et al. [Phys. Rev. Lett. 129, 075001 (2022)] achieved a fusion yield output of 1.3 MJ from ∼ 220 kJ of x-ray energy absorbed by the capsule, demonstrating remarkable progress in the field of laser driven inertial confinement fusion. In the study by A. R. Christopherson [“Effects of charged particle heating on the hydrodynamics of inertially confined plasmas,” Ph.D. thesis (2020)], the plasma conditions needed to claim the onset of ignition and burn propagation were outlined and multiple criterion were provided to assess progress in inertial fusion experiments. In this work, we modify the metrics from A. R. Christopherson [“Effects of charged particle heating on the hydrodynamics of inertially confined plasmas,” Ph.D. thesis (2020)] to accurately calculate performance metrics for indirect-drive experiments on the NIF. We also show that performance metric trends observed in NIF data are consistent with theory and simulations. This analysis indicates that all the identified criterion for ignition and burn propagation have been exceeded by experiment 210 808.

1.
S.
Atzeni
and
J.
Meyer-ter Vehn
,
The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter
(
OUP
,
Oxford
,
2004
), Vol.
125
.
2.
S.
Atzeni
and
A.
Caruso
, “
Inertial confinement fusion: Ignition of isobarically compressed D-T targets
,”
Il Nuovo Cimento B
80
,
71
(
1984
).
3.
G.
Fraley
,
E.
Linnebur
,
R.
Mason
, and
R.
Morse
, “
Thermonuclear burn characteristics of compressed deuterium-tritium microspheres
,”
Phys. Fluids
17
,
474
(
1974
).
4.
R.
Kishony
and
D.
Shvarts
, “
Ignition condition and gain prediction for perturbed inertial confinement fusion targets
,”
Phys. Plasmas
8
,
4925
(
2001
).
5.
J. D.
Lawson
, “
Some criteria for a power producing thermonuclear reactor
,”
Proc. Phys. Soc., Sect. B
70
,
6
(
1957
).
6.
R.
Betti
,
A.
Christopherson
,
B.
Spears
,
R.
Nora
,
A.
Bose
,
J.
Howard
,
K.
Woo
,
M.
Edwards
, and
J.
Sanz
, “
Alpha heating and burning plasmas in inertial confinement fusion
,”
Phys. Rev. Lett.
114
,
255003
(
2015
).
7.
J.
Lindl
,
O.
Landen
,
J.
Edwards
,
E.
Moses
, and
N.
team
, “
Review of the National Ignition Campaign 2009–2012
,”
Phys. Plasmas
21
,
020501
(
2014
).
8.
A.
Christopherson
,
R.
Betti
,
A.
Bose
,
J.
Howard
,
K.
Woo
,
E.
Campbell
,
J.
Sanz
, and
B.
Spears
, “
A comprehensive alpha-heating model for inertial confinement fusion
,”
Phys. Plasmas
25
,
012703
(
2018
).
9.
P.
Patel
,
P.
Springer
,
C.
Weber
,
L.
Jarrott
,
O.
Hurricane
,
B.
Bachmann
,
K.
Baker
,
L.
Berzak Hopkins
,
D.
Callahan
,
D.
Casey
et al, “
Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility
,”
Phys. Plasmas
27
,
050901
(
2020
).
10.
C.
Zhou
and
R.
Betti
, “
A measurable lawson criterion and hydro-equivalent curves for inertial confinement fusion
,”
Phys. Plasmas
15
,
102707
(
2008
).
11.
A.
Christopherson
,
R.
Betti
,
S.
Miller
,
V.
Gopalaswamy
,
O.
Mannion
, and
D.
Cao
, “
Theory of ignition and burn propagation in inertial fusion implosions
,”
Phys. Plasmas
27
,
052708
(
2020
).
12.
A.
Christopherson
,
R.
Betti
, and
J.
Lindl
, “
Thermonuclear ignition and the onset of propagating burn in inertial fusion implosions
,”
Phys. Rev. E
99
,
021201
(
2019
).
13.
J.
Lindl
,
S.
Haan
,
O.
Landen
,
A.
Christopherson
, and
R.
Betti
, “
Progress toward a self-consistent set of 1D ignition capsule metrics in ICF
,”
Phys. Plasmas
25
,
122704
(
2018
).
14.
O.
Hurricane
,
S.
Maclaren
,
M.
Rosen
,
J.
Hammer
,
P.
Springer
, and
R.
Betti
, “
A thermodynamic condition for ignition and burn-propagation in cryogenic layer inertially confined fusion implosions
,”
Phys. Plasmas
28
,
022704
(
2021
).
15.
E. M.
Campbell
and
W. J.
Hogan
, “
The National Ignition Facility-applications for inertial fusion energy and high-energy-density science
,”
Plasma Phys. Controlled Fusion
41
,
B39
(
1999
).
16.
A.
Zylstra
,
O.
Hurricane
,
D.
Callahan
,
A.
Kritcher
,
J.
Ralph
,
H.
Robey
,
J.
Ross
,
C.
Young
,
K.
Baker
,
D.
Casey
et al, “
Burning plasma achieved in inertial fusion
,”
Nature
601
,
542
(
2022
).
17.
E.
Hartouni
,
A.
Moore
,
A.
Crilly
,
B.
Appelbe
,
P.
Amendt
,
K.
Baker
,
D.
Casey
,
D.
Clark
,
T.
Döppner
,
M.
Eckart
et al, “
Evidence for suprathermal ion distribution in burning plasmas
,”
Nature
19
,
72
(
2023
).
18.
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
, and
the indirect drive ICF collaboration
, “
Lawson criterion for ignition exceeded in an inertial fusion experiment
,”
Phys. Rev. Lett.
129
,
075001
(
2022
).
19.
A.
Kritcher
,
A.
Zylstra
,
D.
Callahan
,
O.
Hurricane
,
C.
Weber
,
D.
Clark
,
C.
Young
,
J.
Ralph
,
D.
Casey
,
A.
Pak
et al, “
Design of an inertial fusion experiment exceeding the Lawson criterion for ignition
,”
Phys. Rev. E
106
,
025201
(
2022
).
20.
A.
Zylstra
,
A.
Kritcher
,
O.
Hurricane
,
D.
Callahan
,
J.
Ralph
,
D.
Casey
,
A.
Pak
,
O.
Landen
,
B.
Bachmann
,
K.
Baker
et al, “
Experimental achievement and signatures of ignition at the National Ignition Facility
,”
Phys. Rev. E
106
,
025202
(
2022
).
21.
A.
Christopherson
, “
Effects of charged particle heating on the hydrodynamics of inertially confined plasmas
,” Ph.D. thesis (University of Rochester,
2020
).
22.
B. K.
Spears
,
S.
Glenzer
,
M.
Edwards
,
S.
Brandon
,
D.
Clark
,
R.
Town
,
C.
Cerjan
,
R.
Dylla-Spears
,
E.
Mapoles
,
D.
Munro
et al, “
Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the national ignition campaign
,”
Phys. Plasmas
19
,
056316
(
2012
).
23.
P.
Chang
,
R.
Betti
,
B.
Spears
,
K.
Anderson
,
J.
Edwards
,
M.
Fatenejad
,
J.
Lindl
,
R.
McCrory
,
R.
Nora
, and
D.
Shvarts
, “
Generalized measurable ignition criterion for inertial confinement fusion
,”
Phys. Rev. Lett.
104
,
135002
(
2010
).
24.
A.
Christopherson
,
R.
Betti
,
J.
Howard
,
K.
Woo
,
A.
Bose
,
E.
Campbell
, and
V.
Gopalaswamy
, “
Theory of alpha heating in inertial fusion: Alpha-heating metrics and the onset of the burning-plasma regime
,”
Phys. Plasmas
25
,
072704
(
2018
).
25.
G.
Grim
,
N.
Guler
,
F.
Merrill
,
G.
Morgan
,
C.
Danly
,
P.
Volegov
,
C.
Wilde
,
D.
Wilson
,
D.
Clark
,
D.
Hinkel
et al, “
Nuclear imaging of the fuel assembly in ignition experiments
,”
Phys. Plasmas
20
,
056320
(
2013
).
26.
R.
Betti
,
P.
Chang
,
B.
Spears
,
K.
Anderson
,
J.
Edwards
,
M.
Fatenejad
,
J.
Lindl
,
R.
McCrory
,
R.
Nora
, and
D.
Shvarts
, “
Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
,”
Phys. Plasmas
17
,
058102
(
2010
).
27.
M. M.
Marinak
,
G.
Kerbel
,
N.
Gentile
,
O.
Jones
,
D.
Munro
,
S.
Pollaine
,
T.
Dittrich
, and
S.
Haan
, “
Three-dimensional hydra simulations of National Ignition Facility targets
,”
Phys. Plasmas
8
,
2275
(
2001
).
28.
M. G.
Johnson
,
J.
Frenje
,
D.
Casey
,
C.
Li
,
F.
Séguin
,
R.
Petrasso
,
R.
Ashabranner
,
R.
Bionta
,
D.
Bleuel
,
E.
Bond
et al, “
Neutron spectrometry-an essential tool for diagnosing implosions at the National Ignition Facility
,”
Rev. Sci. Instrum.
83
,
10D308
(
2012
).
29.
D.
Casey
,
J.
Frenje
,
M.
Gatu Johnson
,
F.
Séguin
,
C.
Li
,
R.
Petrasso
,
V. Y.
Glebov
,
J.
Katz
,
J.
Knauer
,
D.
Meyerhofer
et al, “
Measuring the absolute deuterium–tritium neutron yield using the magnetic recoil spectrometer at omega and the NIF
,”
Rev. Sci. Instrum.
83
,
10D912
(
2012
).
30.
A.
Kritcher
,
A.
Zylstra
,
D.
Callahan
,
O.
Hurricane
,
C.
Weber
,
J.
Ralph
,
D.
Casey
,
A.
Pak
,
K.
Baker
,
B.
Bachmann
et al, “
Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E
,”
Phys. Plasmas
28
,
072706
(
2021
).
31.
S.
Le Pape
,
L. B.
Hopkins
,
L.
Divol
,
A.
Pak
,
E.
Dewald
,
S.
Bhandarkar
,
L.
Bennedetti
,
T.
Bunn
,
J.
Biener
,
J.
Crippen
et al, “
Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility
,”
Phys. Rev. Lett.
120
,
245003
(
2018
).
32.
D.
Casey
,
C.
Thomas
,
K.
Baker
,
B.
Spears
,
M.
Hohenberger
,
S.
Khan
,
R.
Nora
,
C.
Weber
,
D.
Woods
,
O.
Hurricane
et al, “
The high velocity, high adiabat,‘bigfoot’ campaign and tests of indirect-drive implosion scaling
,”
Phys. Plasmas
25
,
056308
(
2018
).
33.
S.
Haan
,
J.
Lindl
,
D.
Callahan
,
D.
Clark
,
J.
Salmonson
,
B.
Hammel
,
L.
Atherton
,
R.
Cook
,
M.
Edwards
,
S.
Glenzer
et al, “
Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
,”
Phys. Plasmas
18
,
051001
(
2011
).
34.
D.
Clark
,
D.
Hinkel
,
D.
Eder
,
O.
Jones
,
S.
Haan
,
B.
Hammel
,
M.
Marinak
,
J.
Milovich
,
H.
Robey
,
L.
Suter
et al, “
Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility
,”
Phys. Plasmas
20
,
056318
(
2013
).
35.
D.
Clark
,
A.
Kritcher
,
S.
Yi
,
A.
Zylstra
,
S.
Haan
, and
C.
Weber
, “
Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
,”
Phys. Plasmas
25
,
032703
(
2018
).
36.
G.
Zimmerman
and
W.
Kruer
, “
Numerical simulation of laser-initiated fusion
,”
Comments Plasma Phys. Controlled Fusion
2
,
51
(
1975
); available at https://www.osti.gov/etdeweb/biblio/7214660.
37.
M.
Rosen
,
H.
Scott
,
D.
Hinkel
,
E.
Williams
,
D.
Callahan
,
R.
Town
,
L.
Divol
,
P.
Michel
,
W.
Kruer
,
L.
Suter
et al, “
The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
,”
High Energy Density Phys.
7
,
180
(
2011
).
38.
H.
Robey
,
T.
Boehly
,
P.
Celliers
,
J.
Eggert
,
D.
Hicks
,
R.
Smith
,
R.
Collins
,
M.
Bowers
,
K.
Krauter
,
P.
Datte
et al, “
Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation
,”
Phys. Plasmas
19
,
042706
(
2012
).
39.
E. M.
Corey
and
D. A.
Young
, “
New prototype equation of state data library
,”
Technical Report No.
UCRL-JC-127698; CONF-970707 [
Lawrence Livermore National Lab.(LLNL)
,
Livermore, CA
,
1997
].
40.
C. A.
Iglesias
and
B. G.
Wilson
, “
Statistical simulation of atomic data in opacity calculations
,”
J. Quant. Spectrosc. Radiat. Transfer
52
,
127
(
1994
).
41.
R.
Nora
, private communication.
42.
D.
Casey
,
O.
Landen
,
E.
Hartouni
,
R.
Bionta
,
K.
Hahn
,
P.
Volegov
,
D.
Fittinghoff
,
V.
Geppert-Kleinrath
,
C.
Wilde
,
J.
Milovich
et al, “
Three dimensional low-mode areal-density non-uniformities in indirect-drive implosions at the National Ignition Facility
,”
Phys. Plasmas
28
,
042708
(
2021
).
43.
A.
Kritcher
,
C.
Young
,
H.
Robey
,
C.
Weber
,
A.
Zylstra
,
O.
Hurricane
,
D.
Callahan
,
J.
Ralph
,
J.
Ross
,
K.
Baker
et al, “
Design of inertial fusion implosions reaching the burning plasma regime
,”
Nat. Phys.
18
,
251
(
2022
).
44.
L.
Divol
, “
Dynamics and variability in near unity gain inertial confinement fusion implosions on the National Ignition Facility
,” in the
64th Annual Meeting of the APS Division of Plasma Physics
, Spokane, WA, 17–21 October (APS,
2022
).
45.
C.
Weber
,
D.
Clark
,
A.
Pak
,
N.
Alfonso
,
B.
Bachmann
,
L.
Berzak Hopkins
,
T.
Bunn
,
J.
Crippen
,
L.
Divol
,
T.
Dittrich
et al, “
Mixing in ICF implosions on the National Ignition FACILITY caused by the fill-tube
,”
Phys. Plasmas
27
,
032703
(
2020
).
46.
B.
Hammel
,
R.
Tommasini
,
D.
Clark
,
J.
Field
,
M.
Stadermann
, and
C.
Weber
, “
Simulations and experiments of the growth of the ‘tent’ perturbation in NIF ignition implosions
,”
J. Phys.: Conf. Ser.
717
,
012021
(
2016
).
47.
A.
Pak
,
L.
Divol
,
C. R.
Weber
,
L. F. B.
Hopkins
,
D. S.
Clark
,
E. L.
Dewald
,
D. N.
Fittinghoff
,
V.
Geppert-Kleinrath
,
M.
Hohenberger
,
S.
Le Pape
,
T.
Ma
,
A. G.
MacPhee
,
D. A.
Mariscal
,
E.
Marley
,
A. S.
Moore
,
L. A.
Pickworth
,
P. L.
Volegov
,
C.
Wilde
,
O. A.
Hurricane
, and
P. K.
Patel
, “
Impact of localized radiative loss on inertial confinement fusion implosions
,”
Phys. Rev. Lett.
124
,
145001
(
2020
).
48.
B.
Bachmann
,
S. A.
MacLaren
,
S.
Bhandarkar
,
T.
Briggs
,
D.
Casey
,
L.
Divol
,
T.
Doppner
,
D.
Fittinghoff
,
M.
Freeman
,
S.
Haan
,
G. N.
Hall
,
B.
Hammel
,
E.
Hartouni
,
N.
Izumi
,
V.
Geppert-Kleinrath
,
S.
Khan
,
B.
Kozioziemski
,
C.
Krauland
,
O.
Landen
,
D.
Mariscal
,
E.
Marley
,
L.
Masse
,
K.
Meaney
,
G.
Mellos
,
A.
Moore
,
A.
Pak
,
P.
Patel
,
M.
Ratledge
,
N.
Rice
,
M.
Rubery
,
J.
Salmonson
,
J.
Sater
,
D.
Schlossberg
,
M.
Schneider
,
V. A.
Smalyuk
,
C.
Trosseille
,
P.
Volegov
,
C.
Weber
,
G. J.
Williams
, and
A.
Wray
, “
Measurement of dark ice-ablator mix in inertial confinement fusion
,”
Phys. Rev. Lett.
129
,
275001
(
2022
).
49.
G. H.
McCall
, “
Cloud and microjet mix: A possible source of yield limitation of the National Ignition Facility targets
,”
Phys. Plasmas
30
,
012707
(
2023
).
50.
A. B.
Zylstra
,
D. T.
Casey
,
A.
Kritcher
,
L.
Pickworth
,
B.
Bachmann
,
K.
Baker
,
J.
Biener
,
T.
Braun
,
D.
Clark
,
V.
Geppert-Kleinrath
,
M.
Hohenberger
,
C.
Kong
,
S.
Le Pape
,
A.
Nikroo
,
N.
Rice
,
M.
Rubery
,
M.
Stadermann
,
D.
Strozzi
,
C.
Thomas
,
P.
Volegov
,
C.
Weber
,
C.
Wild
,
C.
Wilde
,
D. A.
Callahan
, and
O. A.
Hurricane
, “
Hot-spot mix in large-scale HDC implosions at NIF
,”
Phys. Plasmas
27
,
092709
(
2020
).
51.
V.
Smalyuk
,
C.
Weber
,
O.
Landen
,
S.
Ali
,
B.
Bachmann
,
P.
Celliers
,
E.
Dewald
,
A.
Fernandez
,
B.
Hammel
,
G.
Hall
et al, “
Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility
,”
Plasma Phys. Controlled Fusion
62
,
014007
(
2019
).
52.
T.
Murphy
,
R.
Lerche
,
C.
Bennett
, and
G.
Howe
, “
Ion-temperature measurement of indirectly driven implosions using a geometry-compensated neutron time-of-flight detector
,”
Rev. Sci. Instrum.
66
,
930
(
1995
).
53.
D. H.
Munro
, “
Interpreting inertial fusion neutron spectra
,”
Nucl. Fusion
56
,
036001
(
2016
).
54.
H.
Herrmann
,
C.
Young
,
J.
Mack
,
Y.
Kim
,
A.
McEvoy
,
S.
Evans
,
T.
Sedillo
,
S.
Batha
,
M.
Schmitt
,
D.
Wilson
et al, “
ICF gamma-ray reaction history diagnostics
,”
J. Phys.: Conf. Ser.
244
,
032047
(
2010
).
You do not currently have access to this content.