A fast and accurate turbulence transport model based on quasilinear gyrokinetics is developed. The model consists of a set of neural networks trained on a bespoke quasilinear GENE dataset, with a saturation rule calibrated to dedicated nonlinear simulations. The resultant neural network is approximately eight orders of magnitude faster than the original GENE quasilinear calculations. ITER predictions with the new model project a fusion gain in line with ITER targets. While the dataset is currently limited to the ITER baseline regime, this approach illustrates a pathway to develop reduced-order turbulence models both faster and more accurate than the current state-of-the-art.

1.
F. M.
Poli
, “
Integrated tokamak modeling: When physics informs engineering and research planning
,”
Phys. Plasmas
25
,
055602
(
2018
).
2.
X.
Garbet
,
Y.
Idomura
,
L.
Villard
, and
T.
Watanabe
, “
Gyrokinetic simulations of turbulent transport
,”
Nucl. Fusion
50
,
043002
(
2010
).
3.
A.
White
, “
Validation of nonlinear gyrokinetic transport models using turbulence measurements
,”
J. Plasma Phys.
85
,
925850102
(
2019
).
4.
G. M.
Staebler
,
M.
Knolker
,
P.
Snyder
,
C.
Angioni
,
E.
Fable
,
T.
Luda
,
C.
Bourdelle
,
J.
Garcia
,
J.
Citrin
,
M.
Marin
et al, “
Advances in prediction of tokamak experiments with theory-based models
,”
Nucl. Fusion
62
,
042005
(
2022
).
5.
G.
Staebler
,
J.
Kinsey
, and
R.
Waltz
, “
A theorybased transport model with comprehensive physics
,”
Phys. Plasmas
14
,
055909
(
2007
).
6.
C.
Bourdelle
,
J.
Citrin
,
B.
Baiocchi
,
A.
Casati
,
P.
Cottier
,
X.
Garbet
,
F.
Imbeaux
, and
JET Contributors,
Core turbulent transport in tokamak plasmas: Bridging theory and experiment with QuaLiKiz
,”
Plasma Phys. Controlled Fusion
58
,
014036
(
2015
).
7.
J.
Citrin
,
C.
Bourdelle
,
F.
Casson
,
C.
Angioni
,
N.
Bonanomi
,
Y.
Camenen
,
X.
Garbet
,
L.
Garzotti
,
T.
Görler
,
O.
Gürcan
,
F.
Koechl
,
F.
Imbeaux
,
O.
Linder
,
K.
van de Plassche
,
P.
Strand
,
G.
Szepesi
, and
JET Contributors,
Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz
,”
Plasma Phys. Controlled Fusion
59
,
124005
(
2017
).
8.
C. D.
Stephens
,
X.
Garbet
,
J.
Citrin
,
C.
Bourdelle
,
K. L.
van de Plassche
, and
F.
Jenko
, “
Quasilinear gyrokinetic theory: A derivation of QuaLiKiz
,”
J. Plasma Phys.
87
,
905870409
(
2021
).
9.
T.
Rafiq
,
A. H.
Kritz
,
V.
Tanfri
,
A. Y.
Pankin
,
I.
Voitsekhovitch
,
R.
Budny
, and
JET EFDA Contributors,
Integrated modeling of temperature profiles in L-mode tokamak discharges
,”
Phys. Plasmas
21
,
122505
(
2014
).
10.
J.
Citrin
,
S.
Breton
,
F.
Felici
,
F.
Imbeaux
,
T.
Aniel
,
J.
Artaud
,
B.
Baiocchi
,
C.
Bourdelle
,
Y.
Camenen
, and
J.
Garcia
, “
Real-time capable first principle based modelling of tokamak turbulent transport
,”
Nucl. Fusion
55
,
092001
(
2015
).
11.
F.
Felici
,
J.
Citrin
,
A.
Teplukhina
,
J.
Redondo
,
C.
Bourdelle
,
F.
Imbeaux
,
O.
Sauter
,
JET Contributors, and EUROfusion MST1 Team
, “
Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first principle-based transport model
,”
Nucl. Fusion
58
,
096006
(
2018
).
12.
K. L.
van de Plassche
,
J.
Citrin
,
C.
Bourdelle
,
Y.
Camenen
,
F. J.
Casson
,
V. I.
Dagnelie
,
F.
Felici
,
A.
Ho
,
S.
Van Mulders
, and
JET Contributors
, “
Fast modeling of turbulent transport in fusion plasmas using neural networks
,”
Phys. Plasmas
27
,
022310
(
2020
).
13.
A.
Ho
,
J.
Citrin
,
C.
Bourdelle
,
Y.
Camenen
,
F. J.
Casson
,
K. L.
van de Plassche
,
H.
Weisen
, and
JET Contributors
, “
Neural network surrogate of QuaLiKiz using JET experimental data to populate training space
,”
Phys. Plasmas
28
,
032305
(
2021
).
14.
S.
Van Mulders
,
F.
Felici
,
O.
Sauter
,
J.
Citrin
,
A.
Ho
,
M.
Marin
, and
K.
van de Plassche
, “
Rapid optimization of stationary tokamak plasmas in RAPTOR: Demonstration for the ITER hybrid scenario with neural network surrogate transport model QLKNN
,”
Nucl. Fusion
61
,
086019
(
2021
).
15.
A.
Ho
,
J.
Citrin
,
C. D.
Challis
,
C.
Bourdelle
,
F. J.
Casson
,
J.
Garcia
,
J.
Hobirk
,
A.
Kappatou
,
D.
Keeling
,
D.
King
et al, “
Predictive jet current ramp-up modelling using QuaLiKiz-neural-network
,”
Nucl. Fusion
63
,
066014
(
2023
).
16.
I.
Casiraghi
,
P.
Mantica
,
F.
Koechl
,
R.
Ambrosino
,
B.
Baiocchi
,
A.
Castaldo
,
J.
Citrin
,
M.
Dicorato
,
L.
Frassinetti
,
A.
Mariani
et al, “
First principle-based multi-channel integrated modelling in support of the design of the divertor tokamak test facility
,”
Nucl. Fusion
61
,
116068
(
2021
).
17.
O.
Meneghini
,
S. P.
Smith
,
P. B.
Snyder
,
G. M.
Staebler
,
J.
Candy
,
E.
Belli
,
L.
Lao
,
M.
Kostuk
,
T.
Luce
,
T.
Luda
et al, “
Self-consistent core-pedestal transport simulations with neural network accelerated models
,”
Nucl. Fusion
57
,
086034
(
2017
).
18.
O.
Meneghini
,
G.
Snoep
,
B.
Lyons
,
J.
McClenaghan
,
C.
Imai
,
B.
Grierson
,
S.
Smith
,
G.
Staebler
,
P.
Snyder
,
J.
Candy
et al, “
Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS
,”
Nucl. Fusion
61
,
026006
(
2020
).
19.
S.
Morosohk
,
A.
Pajares
,
T.
Rafiq
, and
E.
Schuster
, “
Neural network model of the multi-mode anomalous transport module for accelerated transport simulations
,”
Nucl. Fusion
61
,
106040
(
2021
).
20.
S.
Morosohk
,
T.
Rafiq
,
E.
Schuster
,
O.
Meneghini
, and
M.
Boyer
, “
Control-oriented current-profile response modeling using neural network accelerated versions of TGLF and NUBEAM for DIII-D
,”
APS Div. Plasma Phys. Meet. Abstr.
2020
,
GP19-029
.
21.
A.
Gillgren
,
E.
Fransson
,
D.
Yadykin
,
L.
Frassinetti
, and
P.
Strand
, “
Enabling adaptive pedestals in predictive transport simulations using neural networks
,”
Nucl. Fusion
62
,
096006
(
2022
).
22.
M.
Boyer
,
S.
Kaye
, and
K.
Erickson
, “
Real-time capable modeling of neutral beam injection on NSTX-U using neural networks
,”
Nucl. Fusion
59
,
056008
(
2019
).
23.
A.
Piccione
,
J.
Berkery
,
S.
Sabbagh
, and
Y.
Andreopoulos
, “
Physics-guided machine learning approaches to predict the ideal stability properties of fusion plasmas
,”
Nucl. Fusion
60
,
046033
(
2020
).
24.
A.
Merlo
,
D.
Böckenhoff
,
J.
Schilling
,
U.
Höfel
,
S.
Kwak
,
J.
Svensson
,
A.
Pavone
,
S. A.
Lazerson
,
T. S.
Pedersen
et al, “
Proof of concept of a fast surrogate model of the VMEC code via neural networks in Wendelstein 7-X scenarios
,”
Nucl. Fusion
61
,
096039
(
2021
).
25.
N.
Bonanomi
,
C.
Angioni
,
U.
Plank
,
P.
Schneider
,
C.
Maggi
, and
ASDEX Upgrade Team and EUROFusion MST1 Team
, and
JET Contributors
. “
Edge turbulent transport toward the L–H transition in ASDEX Upgrade and JET-ILW
,”
Phys. Plasmas
28
,
052504
(
2021
).
26.
N.
Kumar
,
Y.
Camenen
,
S.
Benkadda
,
C.
Bourdelle
,
A.
Loarte
,
A. R.
Polevoi
,
F.
Widmer
et al, “
Turbulent transport driven by kinetic ballooning modes in the inner core of JET hybrid H-modes
,”
Nucl. Fusion
61
,
036005
(
2021
).
27.
J.
Citrin
,
F.
Jenko
,
P.
Mantica
,
D.
Told
,
C.
Bourdelle
,
J.
Garcia
,
J.
Haverkort
,
G.
Hogeweij
,
T.
Johnson
, and
M.
Pueschel
, “
Nonlinear stabilization of tokamak microturbulence by fast ions
,”
Phys. Rev. Lett.
111
,
155001
(
2013
).
28.
F. J.
Casson
,
H.
Patten
,
C.
Bourdelle
,
S.
Breton
,
J.
Citrin
,
F.
Koechl
,
M.
Sertoli
,
C.
Angioni
,
Y.
Baranov
,
R.
Bilato
et al, “
Predictive multi-channel flux-driven modelling to optimise ICRH tungsten control and fusion performance in JET
,”
Nucl. Fusion
60
,
066029
(
2020
).
29.
M.
Reisner
,
E.
Fable
,
J.
Stober
,
A.
Bock
,
A.
Ba non Navarro
,
A.
Di Siena
,
R.
Fischer
,
V.
Bobkov
, and
R.
McDermott
, “
Increased core ion temperatures in high-beta advanced scenarios in ASDEX upgrade
,”
Nucl. Fusion
60
,
082005
(
2020
).
30.
M.
Pueschel
,
D.
Hatch
,
D.
Ernst
,
W.
Guttenfelder
,
P.
Terry
,
J.
Citrin
, and
J.
Connor
, “
On microinstabilities and turbulence in steep-gradient regions of fusion devices
,”
Plasma Phys. Controlled Fusion
61
,
034002
(
2019
).
31.
X.
Jian
,
C.
Holland
,
J.
Candy
,
S.
Ding
,
E.
Belli
,
V.
Chan
,
G.
Staebler
,
A.
Garofalo
,
J.
Mcclenaghan
, and
P.
Snyder
, “
Role of microtearing mode in DIII-D and future high-β p core plasmas
,”
Phys. Plasmas
28
,
042501
(
2021
).
32.
B.
Patel
,
D.
Dickinson
,
F.
Koechl
,
C.
Roach
,
G.
Staebler
, and
H. R.
Wilson
, “
Optimising TGLF for a Q = 10 burning spherical tokamak
,” in
Proceedings of the 46th EPS Conference on Plasma Physics
(
European Physical Society (EPS)
,
2019
).
33.
G. M.
Staebler
,
E.
Belli
,
J.
Candy
,
J.
Kinsey
,
H.
Dudding
, and
B.
Patel
, “
Verification of a quasi-linear model for gyrokinetic turbulent transport
,”
Nucl. Fusion
61
,
116007
(
2021
).
34.
H. G.
Dudding
,
F. J.
Casson
,
D.
Dickinson
,
B. S.
Patel
,
C. M.
Roach
,
E. A.
Belli
, and
G. M.
Staebler
, “
A new quasilinear saturation rule for tokamak turbulence with application to the isotope scaling of transport
,”
Nucl. Fusion
62
,
096005
(
2022
).
35.
F.
Jenko
,
W.
Dorland
,
M.
Kotschenreuther
, and
B.
Rogers
, “
Electron temperature gradient driven turbulence
,”
Phys. Plasmas
7
,
1904
(
2000
).
36.
P.
Mantica
,
C.
Angioni
,
N.
Bonanomi
,
J.
Citrin
,
B.
Grierson
,
F.
Koechl
,
A.
Mariani
,
G.
Staebler
,
J.
Eurofusion
,
M.
Eurofusion
et al, “
Progress and challenges in understanding core transport in tokamaks in support to ITER operations
,”
Plasma Phys. Controlled Fusion
62
,
014021
(
2020
).
37.
G.
Cenacchi
and
A.
Taroni
, “
JETTO: A free boundary plasma transport code
,” Technical Report No. ENEA-RT-TIB-88-5 (
ENEA
,
Rome, Italy
,
1988
).
38.
M.
Romanelli
,
G.
Corrigan
,
V.
Parail
,
S.
Wiesen
,
R.
Ambrosino
,
P. D. S. A.
Belo
,
L.
Garzotti
,
D.
Harting
,
F.
Koechl
,
T.
Koskela
et al, “
JINTRAC: A system of codes for integrated simulation of tokamak scenarios
,”
Plasma Fusion Res.
9
,
3403023
(
2014
).
39.
E.
Narita
,
M.
Honda
,
M.
Nakata
,
M.
Yoshida
, and
N.
Hayashi
, “
Quasilinear turbulent particle and heat transport modelling with a neural-network-based approach founded on gyrokinetic calculations and experimental data
,”
Nucl. Fusion
61
,
116041
(
2021
).
40.
P.
Rodriguez-Fernandez
,
N.
Howard
, and
J.
Candy
, “
Nonlinear gyrokinetic predictions of SPARC burning plasma profiles enabled by surrogate modeling
,”
Nucl. Fusion
62
,
076036
(
2022
).
41.
P.
Snyder
,
R.
Groebner
,
A.
Leonard
,
T.
Osborne
, and
H.
Wilson
, “
Development and validation of a predictive model for the pedestal height
,”
Phys. Plasmas
16
,
056118
(
2009
).
42.
V.
Dagnelie
,
J.
Citrin
,
F.
Jenko
,
M.
Pueschel
,
T.
Görler
,
D.
Told
, and
H.
Doerk
, “
Growth rates of ITG modes in the presence of flow shear
,”
Phys. Plasmas
26
,
012502
(
2019
).
43.
C.
Chrystal
,
B.
Grierson
,
S.
Haskey
,
A.
Sontag
,
F.
Poli
,
M.
Shafer
, and
J.
Degrassie
, “
Predicting the rotation profile in ITER
,”
Nucl. Fusion
60
,
036003
(
2020
).
44.
J.
Citrin
and
P.
Mantica
, “
Overview of tokamak turbulence stabilization by fast ions
,”
Plasma Phys. Controlled Fusion
65
,
033001
(
2023
).
45.
R.
Miller
,
M.
Chu
,
J.
Greene
,
Y.
Lin-liu
, and
R.
Waltz
, “
Non-circular, finite aspect ratio, local equilibrium model
,”
Phys. Plasmas
5
,
973
(
1998
).
46.
S.
Maeyama
,
T.-H.
Watanabe
,
M.
Nakata
,
M.
Nunami
,
Y.
Asahi
, and
A.
Ishizawa
, “
Multiscale turbulence simulation suggesting improvement of electron heated plasma confinement
,”
Nat. Commun.
13
,
3166
(
2022
).
47.
J.
Citrin
,
J.
Garcia
,
T.
Görler
,
F.
Jenko
,
P.
Mantica
,
D.
Told
,
C.
Bourdelle
,
D.
Hatch
,
G.
Hogeweij
,
T.
Johnson
et al, “
Electromagnetic stabilization of tokamak microturbulence in a high-β regime
,”
Plasma Phys. Controlled Fusion
57
,
014032
(
2014
).
48.
J.
Garcia
,
T.
Görler
,
F.
Jenko
, and
G.
Giruzzi
, “
Gyrokinetic nonlinear isotope effects in tokamak plasmas
,”
Nucl. Fusion
57
,
014007
(
2016
).
49.
J.
Garcia
,
T.
Görler
, and
F.
Jenko
, “
Isotope and fast ions turbulence suppression effects: Consequences for high-β ITER plasmas
,”
Phys. Plasmas
25
,
055902
(
2018
).
50.
S.
Mazzi
,
J.
Garcia
,
D.
Zarzoso
,
Y. O.
Kazakov
,
J.
Ongena
,
M.
Dreval
,
M.
Nocente
,
Ž.
Štancar
,
G.
Szepesi
,
J.
Eriksson
et al, “
Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions
,”
Nat. Phys.
18,
776
782
(
2022
).
51.
M. A.
Beer
,
S.
Cowley
, and
G.
Hammett
, “
Field-aligned coordinates for nonlinear simulations of tokamak turbulence
,”
Phys. Plasmas
2
,
2687
2700
(
1995
).
52.
C.
Bourdelle
,
X.
Garbet
,
F.
Imbeaux
,
A.
Casati
,
N.
Dubuit
,
R.
Guirlet
, and
T.
Parisot
, “
A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas
,”
Phys. Plasmas
14
,
112501
(
2007
).
53.
T.
Dannert
and
F.
Jenko
, “
Gyrokinetic simulation of collisionless trapped-electron mode turbulence
,”
Phys. Plasmas
12
,
072309
(
2005
).
54.
J.
Citrin
,
C.
Bourdelle
,
P.
Cottier
,
D.
Escande
,
Ö. D.
Gürcan
,
D.
Hatch
,
G.
Hogeweij
,
F.
Jenko
, and
M.
Pueschel
, “
Quasilinear transport modelling at low magnetic shear
,”
Phys. Plasmas
19
,
062305
(
2012
).
55.
J.
Citrin
,
H.
Arnichand
,
J.
Bernardo
,
C.
Bourdelle
,
X.
Garbet
,
F.
Jenko
,
S.
Hacquin
,
M.
Pueschel
, and
R.
Sabot
, “
Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes
,”
Plasma Phys. Controlled Fusion
59
,
064010
(
2017
).
56.
A.
Casati
,
C.
Bourdelle
,
X.
Garbet
,
F.
Imbeaux
,
J.
Candy
,
F.
Clairet
,
G.
Dif-Pradalier
,
G.
Falchetto
,
T.
Gerbaud
,
V.
Grandgirard
et al, “
Validating a quasilinear transport model versus nonlinear simulations
,”
Nucl. Fusion
49
,
085012
(
2009
).
57.
B.
Baiocchi
,
C.
Bourdelle
,
C.
Angioni
,
F.
Imbeaux
,
A.
Loarte
,
M.
Maslov
, and
JET Contributors,
Transport analysis and modelling of the evolution of hollow density profiles plasmas in jet and implication for iter
,”
Nucl. Fusion
55
,
123001
(
2015
).
58.
F.
Chollet
et al, see https://keras.io for “
Keras
,”
2015
.
59.
C.
Challis
,
J.
Cordey
,
H.
Hamnén
,
P.
Stubberfield
,
J.
Christiansen
,
E.
Lazzaro
,
D.
Muir
,
D.
Stork
, and
E.
Thompson
, “
Non-inductively driven currents in JET
,”
Nucl. Fusion
29
,
563
(
1989
).
60.
W. A.
Houlberg
,
K. C.
Shaing
,
S. P.
Hirshman
, and
M. C.
Zarnstorff
, “
Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio
,”
Phys. Plasmas
4
,
3230
3242
(
1997
).
61.
L.
Garzotti
,
B.
Pegourie
,
A.
Geraud
,
D.
Frigione
, and
L.
Baylor
, “
Neutral gas and plasma shielding scaling law for pellet ablation in Maxwellian plasmas
,”
Nucl. Fusion
37
,
1167
(
1997
).
62.
D. R.
Mikkelsen
and
C. E.
Singer
, “
Optimization of steady-state beam-driven tokamak reactors
,”
Nucl. Technol.-Fusion
4
,
237
252
(
1983
).
63.
F.
Köchl
,
S. D.
Pinches
,
C.
Bourdelle
,
F. J.
Casson
,
J.
Citrin
,
G.
Corrigan
,
M.
Dubrov
,
Y.
Gribov
,
D.
Harting
,
A. A.
Kavin
et al, in
Proceedings of the 27th IAEA FEC
(
IAEA CN-258
,
2018
), No. EX/P7-25.
64.
P.
Snyder
,
R.
Groebner
,
J.
Hughes
,
T.
Osborne
,
M.
Beurskens
,
A.
Leonard
,
H.
Wilson
, and
X.
Xu
, “
A first-principles predictive model of the pedestal height and width: Development, testing and ITER optimization with the EPED model
,”
Nucl. Fusion
51
,
103016
(
2011
).
65.
C. D.
Stephens
,
Advances in Quasilinear Gyrokinetic Modeling of Turbulent Transport
(
University of California
,
Los Angeles
,
2021
).
66.
N.
Howard
, private communication (2023).
67.
J.
Burr
,
T.
Madula
,
L.
Zanisi
,
A.
Ho
,
J.
Citrin
,
V.
Gopakumar
, and
S.
Pamela
, “
Active learning pipeline for surrogate models of gyrokinetic turbulence
,”
Bull. Am. Phys. Soc.
(
2022
).
68.
M.
Pueschel
,
B.
Faber
,
J.
Citrin
,
C.
Hegna
,
P.
Terry
, and
D.
Hatch
, “
Stellarator turbulence: Subdominant eigenmodes and quasilinear modeling
,”
Phys. Rev. Lett.
116
,
085001
(
2016
).
69.
P.
Horn
, M.Sc. dissertation (
Eindhoven University of Technology and University of Stuttgart
,
2020
).
70.
J.
Degrave
,
F.
Felici
,
J.
Buchli
,
M.
Neunert
,
B.
Tracey
,
F.
Carpanese
,
T.
Ewalds
,
R.
Hafner
,
A.
Abdolmaleki
,
D.
de Las Casas
et al, “
Magnetic control of tokamak plasmas through deep reinforcement learning
,”
Nature
602
,
414
419
(
2022
).
71.
J.
Citrin
,
P.
Trochim
,
T.
Goerler
,
D.
Pfau
,
K.
van de Plassche
, and
F.
Jenko
(
2023
). “Gyrokinetic linear instabilities and quasilinear uses for variations of ITER tokamak baseline parameters,”
Zenodo
.
You do not currently have access to this content.