Fuel–ablator mix has been established as a major performance degrading effect in the burning plasma regime of recent inertial confinement fusion (ICF) experiments. As such, the study of fuel–ablator mix with experiments and simulations can provide valuable insight for our understanding of these experiments and establish a path for even higher yields and increased robustness. We present a novel high-yield experimental ICF design that is motivated by recent experiments measuring ice–ablator mix with a CH ablator instead of a high-density carbon (HDC) ablator [B. Bachmann et al., Phys. Rev. Lett. 129, 275001 (2022)]. We review these experiments in more detail and describe the modeling assumptions and parameters used to obtain agreement with the data from implosion and burn simulations with mix. Using this mix model calibrated a posteriori to the experimental data, we design an implosion that uses a CH ablator that is predicted to achieve better performance than a recent experiment that achieved net target gain of 1.5 in HDC. Because hydrodynamic instabilities are greatly reduced with this new design, we also expect a high reproducibility at the same implosion adiabat as current record yield experiments.

1.
A. B.
Zylstra
,
O. A.
Hurricane
,
D. A.
Callahan
,
A. L.
Kritcher
,
J. E.
Ralph
,
J. S.
Ross
,
C. V.
Young
,
K. L.
Baker
,
D. T.
Casey
,
T.
Döppner
et al, “
Burning plasma achieved in inertial fusion
,”
Nature
601
,
542
548
(
2022
).
2.
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B. B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
et al, “
Lawson's criteria for ignition exceeded in an inertial fusion experiment
,”
Phys. Rev. Lett.
129
,
075001
(
2022
).
3.
Department of Energy
, see https://www.energy.gov/articles/doe-national-laboratory-makes-history-achieving-fusion-ignition for “
DOE National Laboratory Makes History by Achieving Fusion Ignition
” (last accessed December 13,
2022
).
4.
L.
Divol
, “
Dynamics and variability in near unity gain inertial confinement fusion implosions on the National Ignition Facility
,” in
64th Annual Meeting of the APS Division of Plasma Physics
, Spokane, WA, 17–21 October
2022
.
5.
B. A.
Hammel
,
S. W.
Haan
,
D. S.
Clark
,
M. J.
Edwards
,
S. H.
Langer
,
M. M.
Marinak
,
M. V.
Patel
,
J. D.
Salmonson
, and
H. A.
Scott
, “
High-mode Rayleigh-Taylor growth in NIF ignition capsules
,”
High Energy Density Phys.
6
,
171
178
(
2010
).
6.
B. A.
Hammel
,
H. A.
Scott
,
S. P.
Regan
,
C.
Cerjan
,
D. S.
Clark
,
M. J.
Edwards
,
R.
Epstein
,
S. H.
Glenzer
,
S. W.
Haan
,
N.
Izumi
et al, “
Diagnosing and controlling mix in National Ignition Facility implosion experiments
,”
Phys. Plasmas
18
,
056310
(
2011
).
7.
B. A.
Hammel
,
R.
Tommasini
,
D. S.
Clark
,
J.
Field
,
M.
Stadermann
, and
C.
Weber
, “
Simulations and experiments of the growth of the ‘tent’ perturbation in NIF ignition implosions
,”
J. Phys.: Conf. Ser.
717
,
012021
(
2016
).
8.
J. E.
Ralph
,
A. B.
Zylstra
,
S. A.
MacLaren
,
T.
Döppner
,
D. O.
Gericke
,
G. W.
Collins
,
O. A.
Hurricane
,
T.
Ma
,
J. R.
Rygg
,
H. A.
Scott
,
S. A.
Yi
, and
P. K.
Patel
, “
Localized mix-induced radiative cooling in a capsule implosion at the National Ignition Facility
,”
Phys. Rev. E
101
,
033205
(
2020
).
9.
A.
Pak
,
L.
Divol
,
C. R.
Weber
,
L. F.
Berzak Hopkins
,
D. S.
Clark
,
E. L.
Dewald
,
D. N.
Fittinghoff
,
V.
Geppert-Kleinrath
,
M.
Hohenberger
,
S.
Le Pape
et al, “
The impact of localized radiative loss on inertial confinement fusion implosions
,”
Phys. Rev. Lett.
124
,
145001
(
2020
).
10.
C. R.
Weber
,
D. S.
Clark
,
A.
Pak
,
N.
Alfonso
,
B.
Bachmann
,
L. F.
Berzak Hopkins
,
T.
Bunn
,
J.
Crippen
,
L.
Divol
,
T.
Dittrich
et al, “
Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube
,”
Phys. Plasmas
27
,
032703
(
2020
).
11.
D. S.
Clark
,
A. L.
Kritcher
,
S. A.
Yi
,
A. B.
Zylstra
,
S. W.
Haan
, and
C. R.
Weber
, “
Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
,”
Phys. Plasmas
25
,
032703
(
2018
).
12.
V. A.
Smalyuk
,
C. R.
Weber
,
O. L.
Landen
,
S.
Ali
,
B.
Bachmann
,
P. M.
Celliers
,
E. L.
Dewald
,
A.
Fernandez
,
B. A.
Hammel
,
G.
Hall
et al, “
Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility
,”
Plasma Phys. Controlled Fusion
62
,
014007
(
2019
).
13.
T.
Ma
,
P. K.
Patel
,
N.
Izumi
,
P. T.
Springer
,
M. H.
Key
,
L. J.
Atherton
,
L. R.
Benedetti
,
D. K.
Bradley
,
D. A.
Callahan
,
P. M.
Celliers
et al, “
Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions
,”
Phys. Rev. Lett.
111
,
085004
(
2013
).
14.
B.
Bachmann
,
S. A.
MacLaren
,
S.
Bhandarkar
,
T.
Briggs
,
D.
Casey
,
L.
Divol
,
T.
Döppner
,
D.
Fittinghoff
,
M.
Freeman
,
S.
Haan
et al, “
Measurement of dark ice-ablator mix in inertial confinement fusion
,”
Phys. Rev. Lett.
129
,
275001
(
2022
).
15.
S. A.
MacLaren
,
L. P.
Masse
,
C. E.
Czajka
,
S. F.
Khan
,
G. A.
Kyrala
,
T.
Ma
,
J. E.
Ralph
,
J. D.
Salmonson
,
B.
Bachmann
,
L. R.
Benedetti
et al, “
A near one-dimensional indirectly driven implosion at convergence ratio 30
,”
Phys. Plasmas
25
,
056311
(
2018
).
16.
F.
Pérez
,
G. E.
Kemp
,
S. P.
Regan
,
M. A.
Barrios
,
J.
Pino
,
H.
Scott
,
S.
Ayers
,
H.
Chen
,
J.
Emig
,
J. D.
Colvin
et al, “
The NIF x-ray spectrometer calibration campaign at Omega
,”
Rev. Sci. Instrum.
85
,
11D613
(
2014
).
17.
C.
Krauland
,
J.
Huckins
,
N. B.
Thompson
,
D. B.
Thorn
,
M. J.
Ayers
,
J.
Celeste
, and
M. B.
Schneider
, “
Design of the National Ignition Facility imaging and spectroscopy snout (ISS)
,” in
APS Division of Plasma Physics Meeting
,
2019
.
18.
B.
Bachmann
,
T.
Hilsabeck
,
J.
Field
,
N.
Masters
,
C.
Reed
,
T.
Pardini
,
J.
Rygg
,
N.
Alexander
,
L.
Benedetti
,
T.
Döppner
et al, “
Resolving hot-spot microstructure using x-ray penumbral imaging (invited)
,”
Rev. Sci. Instrum.
87
,
11E201
(
2016
).
19.
P. K.
Patel
,
P. T.
Springer
,
C. R.
Weber
,
L. C.
Jarrott
,
O. A.
Hurricane
,
B.
Bachmann
,
K. L.
Baker
,
L. F.
Berzak Hopkins
,
D. A.
Callahan
,
D. T.
Casey
et al, “
Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility
,”
Phys. Plasmas
27
,
050901
(
2020
).
20.
B.
Bachmann
,
R.
Kozakov
,
G.
Gött
,
K.
Ekkert
,
J.-P.
Bachmann
,
J.-L.
Marques
,
H.
Schöpp
,
D.
Uhrlandt
, and
J.
Schein
, “
High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs
,”
J. Phys. D
46
,
125203
(
2013
).
21.
L. C.
Jarrott
,
B.
Bachmann
,
T.
Ma
,
L. R.
Benedetti
,
F. E.
Field
,
E. P.
Hartouni
,
R.
Hatarik
,
N.
Izumi
,
S. F.
Khan
,
O. L.
Landen
et al, “
Thermal temperature measurements of intertial fusion implosions
,”
Phys. Rev. Lett.
121
,
085001
(
2018
).
22.
K. W.
Wong
and
B.
Bachmann
, “
Three-dimensional electron temperature measurement of inertial confinement fusion hotspots using x-ray emission tomography
,”
Rev. Sci. Instrum.
93
,
073501
(
2022
).
23.
T.
Ma
,
P. K.
Patel
,
N.
Izumi
,
P. T.
Springer
,
M. H.
Key
,
L. J.
Atherton
,
M. A.
Barrios
,
L. R.
Benedetti
,
R.
Bionta
,
E.
Bond
et al, “
The role of hot spot mix in the low-foot and high-foot implosions on the NIF
,”
Phys. Plasmas
24
,
056311
(
2017
).
24.
Y.
Zhou
,
G. B.
Zimmerman
, and
W.
Burke
, “
Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities
,”
Phys. Rev. E
65
,
056303
(
2002
).
25.
G.
Dimonte
, “
Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation
,”
Phys. Plasmas
7
,
2255
(
2000
).
26.
O. A.
Hurricane
,
E.
Burke
,
S.
Maples
, and
M.
Viswanathan
, “
Saturation of Richtmyer's impulsive model
,”
Phys. Fluids
12
,
2148
(
2000
).
27.
H. F.
Robey
, “
Effects of viscosity and mass diffusion in hydrodynamically unstable plasma flows
,”
Phys. Plasmas
11
,
4123
(
2004
).
28.
Y.
Zhou
, “
Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations
,”
Phys. Plasmas
14
,
082701
(
2007
).
29.
G. B.
Zimmerman
and
W. L.
Kruer
, “
Numerical simulation of laser-initiated fusion
,”
Comments Plasma Phys. Controlled Fusion
2
,
51
60
(
1975
).
30.
O. L.
Landen
,
D. T.
Casey
,
J. M.
DiNicola
,
T.
Doeppner
,
E. P.
Hartouni
,
D. E.
Hinkel
,
L. F.
Berzak Hopkins
,
M.
Hohenberger
,
A. L.
Kritcher
,
S.
LePape
et al, “
Yield and compression trends and reproducibility at NIF
,”
High Energy Density Phys.
36
,
100755
(
2020
).
31.
A. S.
Moore
,
E. P.
Hartouni
,
D.
Schlossberg
,
S.
Kerr
,
M.
Eckart
,
J.
Carrera
,
L.
Ma
,
C.
Waltz
,
D.
Barker
,
J.
Gjemso
et al, “
The five line-of-sight neutron time-of-flight (nToF) suite on the National Ignition Facility (NIF)
,”
Rev. Sci. Instrum.
92
,
023516
(
2021
).
32.
D. H.
Munro
, “
Interpreting inertial fusion neutron spectra
,”
Nucl. Fusion
56
,
036001
(
2016
).
33.
D. T.
Casey
,
V. A.
Smalyuk
,
R. E.
Tipton
,
J. E.
Pino
,
G. P.
Grim
,
B. A.
Remington
,
D. P.
Rowley
,
S. V.
Weber
,
M.
Barrios
,
L. R.
Benedetti
et al, “
Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility
,”
Phys. Plasmas
21
,
092705
(
2014
).
34.
H. A.
Scott
and
S. B.
Hansen
, “
Advances in NLTE modeling for integrated simulations
,”
High Energy Density Phys.
6
,
39
(
2010
).
35.
S. B.
Hansen
,
J.
Bauche
,
C.
Bauche-Arnoult
, and
M. F.
Gu
, “
Hybrid atomic models for spectroscopic plasma diagnostics
,”
High Energy Density Phys.
3
,
109
114
(
2007
).
36.
S. W.
Haan
,
J. D.
Lindl
,
D. A.
Callahan
,
D. S.
Clark
,
J. D.
Salmonson
,
B. A.
Hammel
,
L. J.
Atherton
,
R. C.
Cook
,
M. J.
Edwards
,
S.
Glenzer
et al, “
Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
,”
Phys. Plasmas
18
,
051001
(
2011
).
37.
L. A.
Pickworth
,
T.
Döppner
,
D. E.
Hinkel
,
J. E.
Ralph
,
B.
Bachmann
,
L. P.
Masse
,
L.
Divol
,
L. R.
Benedetti
,
P. M.
Celliers
,
H.
Chen
et al, “
Application of cross-beam energy transfer to control drive symmetry in ICF implosions in low gas fill Hohlraums at the National Ignition Facility
,”
Phys. Plasmas
27
,
102702
(
2020
).
38.
R.
Betti
,
P. Y.
Chang
,
B. K.
Spears
,
K. S.
Anderson
,
J.
Edwards
,
M.
Fatenejad
,
J. D.
Lindl
,
R. L.
McCrory
,
R.
Nora
, and
D.
Shvarts
, “
Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
,”
Phys. Plasmas
17
,
058102
(
2010
).
39.
J. D.
Lindl
,
S. W.
Haan
,
O. L.
Landen
,
A. R.
Christopherson
, and
R.
Betti
, “
Progress toward a self-consistent set of 1D ignition capsule metrics in ICF
,”
Phys. Plasmas
25
,
122704
(
2018
).
40.
O. A.
Hurricane
,
S. A.
Maclaren
,
M. D.
Rosen
,
J. H.
Hammer
,
P. T.
Springer
, and
R.
Betti
, “
A thermodynamic condition for ignition and burn-propagation in cryogenic layer inertially confined fusion implosions
,”
Phys. Plasmas
28
,
022704
(
2021
).
You do not currently have access to this content.