Underwater discharge is the typical method used to generate plasma in a liquid phase environment and is employed in many engineering applications. This study analyzes the formation and development process of the positive streamer in water under microsecond voltage. The effects of voltage amplitude, liquid conductivity, and the presence of bubbles on the underwater discharge characteristics are analyzed by establishing a two-dimensional finite element simulation model of a needle-plate gap. The simulation results show that the electron density of the streamer in water can reach 1023 m−3, and as the applied voltage amplitude increases, the development speed of the streamer increases and the head of the stream bifurcates. Moreover, when the conductivity of the water is high, the development speed of the streamer and the density of charged particles increase. Furthermore, the presence of bubbles significantly impacts the development of the discharge morphology, causing the channel to have multiple bifurcations.

1.
Y.
Sun
,
G.
Sun
,
P.
Yan
, and
Y.
Peng
, “
The development of the electric pulse oil-mining technology
,”
High Voltage Eng.
28
(
01
),
41
42
(
2002
).
2.
F.
Sun
,
Z.
Zhong
,
Y.
Qiu
,
J.
Zeng
,
R.
Xu
,
T.
Ge
, and
G.
Zhou
, “
Pulse high current power supply used for dredging oil & water wells
,”
High Voltage Eng.
25
(
02
),
47
49
(
1999
).
3.
U.
Andres
, “
Parameters of disintegration of rock by electrical pulses
,”
Powder Technol.
58
(
4
),
265
269
(
1989
).
4.
L. X.
Long
,
C.
Lin
, and
L. K.
Zhou
, “
Effect of prebreakdown time on shock wave generation characteristics of underwater plasma sound source
,”
Math. Problems Eng.
2022
,
5914815
.
5.
Z.
Chen
,
X.
Zhang
, and
B.
Yan
, “
Acoustic effects of underwater plasma pulsed sound source under different electrical parameters
,”
IOP Conf. Ser.: Mater. Sci. Eng.
569
(
3
),
032052
(
2019
).
6.
H.-R.
An
,
S. Y.
Park
,
J. Y.
Huh
,
H.
Kim
,
Y.-C.
Lee
,
Y. B.
Lee
,
Y. C.
Hong
, and
H. U.
Lee
, “
Nanoporous hydrogenated TiO2 photocatalysts generated by underwater discharge plasma treatment for solar photocatalytic applications
,”
Appl. Catal. B: Environ.
211
,
126
136
(
2017
).
7.
W. K.
Tiek
,
Y. S.
Yeon
,
J. S.
Byum
,
R. N.
Abd
,
C. C.
Earn
,
H. Y.
June
,
O.
SangEun
,
C. E.
Ha
, and
J.
Min
, “
Organic pollutants degradation using plasma with simultaneous ammonification assisted by electrolytic two-cell system
,”
Chemosphere
311
(
P2
),
137003
(
2022
).
8.
K.
Zocher
,
P.
Gros
,
M.
Werneburg
,
V.
Brüser
,
J. F.
Kolb
, and
P.
Leinweber
, “
Degradation of glyphosate in water by the application of surface corona discharges
,”
Water Sci. Technol.: J. Int. Assoc. Water Pollut. Res.
84
(
5
),
1293
1301
(
2021
).
9.
S.
Ma
,
K.
Kim
,
S.
Chun
,
S. Y.
Moon
, and
Y.
Hong
, “
Plasma-assisted advanced oxidation process by a multi-hole dielectric barrier discharge in water and its application to wastewater treatment
,”
Chemosphere
243
(
C
),
125377
(
2020
).
10.
R.
Zhong
,
H.
Li
,
Y.
Wang
,
Y.
Zhang
,
J.
Zhou
, and
T.
Wang
, “
Removal of antibiotic resistance genes and pathogenicity in effluent from municipal wastewater treatment plant by plasma oxidation
,”
Chem. Eng. J.
454
,
140274
(
2022
).
11.
W.
Zhang
,
H.
Wu
,
Y.
Sun
,
Q.
Wu
,
J.
Bi
,
J.
Jin
,
M.
Fang
, and
Z.
Shi
, “
Crystalline violet wastewater treatment by low-temperature plasma combined with industrial solid waste red mud
,”
Catalysts
12
(
8
),
908
(
2022
).
12.
R. P.
Gott
,
K. W.
Engeling
,
C. M.
Johnson
,
H. O.
Boles
,
V. C.
Brown
,
M.
Hummerick
,
G. D.
Massa
, and
A. J.
Meier
, “
Plasma sanitization of cherry belle radish seeds for space agricultural applications
,”
Plasma Res. Express
4
(
2
),
025001
(
2022
).
13.
Y.
Liu
,
Y.
Zhao
,
Y.
Ren
,
S.
Liu
, and
F.
Lin
, “
Analysis of cavities characteristics of underwater pulsed current discharge
,”
Plasma Sources Sci. Technol.
30
(
8
),
085005
(
2021
).
14.
B. S.
Sommers
and
J. E.
Foster
, “
Plasma formation in underwater gas bubbles
,”
Plasma Sources Sci. Technol.
23
(
1
),
015020
(
2014
).
15.
Y.
Tu
,
H.
Xia
,
Y.
Yang
, and
X.
Lu
, “
Time-resolved imaging of electrical discharge development in underwater bubbles
,”
Phys. Plasmas
23
(
1
),
013507
(
2016
).
16.
Y.
Tu
,
Y.
Xian
,
Y.
Yang
,
X.
Lu
, and
Y.
Pan
, “
Time-resolved imaging of electrical discharge development in multiple bubbles immersed in water
,”
Plasma Process Polym.
14
,
e1600259
(
2017
).
17.
J. R.
Woodworth
,
J.
Qian
,
R. P.
Joshi
,
E.
Schamiloglu
,
J. A.
Gaudet
,
J. R.
Woodworth
, and
J. M.
Lehr
, “
Analysis of polarity effects in the electrical breakdown of liquids
,”
J. Phys. D: Appl. Phys.
39
,
359
(
2006
).
18.
A.
Charchi Aghdam
and
T.
Farouk
, “
Multiphysics simulation of the initial stage of plasma discharge formation in liquids
,”
Plasma Sources Sci. Technol.
29
(
2
),
025011
(
2020
).
19.
Y.
Li
,
L.
Li
,
J.
Wen
,
Z.
Ni
, and
G.
Zhang
, “
Initiation of nanosecond-pulsed discharge in water: Electrostriction effect
,”
Acta Phys. Sin.
70
(
02
),
024701
(
2021
).
20.
Z.
Tan
,
J.
Wan
, and
Q.
Li
, “
Fractal simulation of streamer discharge in liquid water
,”
High Voltage Eng.
38
(
07
),
1556
1561
(
2012
).
21.
Y.
Qian
,
Y.
Feng
,
M.
Huang
, and
X.
Song
, “
Formation and growth of plasma channels generated by discharge of high voltage nanosecond pulse in water: A simulation study
,”
Chin. J. Vacuum Sci. Technol.
39
(
12
),
1119
1129
(
2019
).
22.
R. S.
Brokaw
, “
Predicting transport properties of dilute gases
,”
Ind. Eng. Chem. Process Des. Develop.
8
,
240
253
(
1969
).
23.
T.
Lewis
, “
Charge transport, charge injection and breakdown in polymeric insulators
,”
J. Phys. D: Appl. Phys.
23
,
1469
(
1990
).
24.
L.
Onsager
, “
Deviations from Ohm's law in weak electrolytes
,”
J. Chem. Phys.
2
,
599
615
(
1934
).
25.
T. S.
Light
,
S.
Licht
,
A. C.
Bevilacqua
, and
K. R.
Morash
, “
The fundamental conductivity and resistivity of water
,”
Electrochem. Solid State Lett.
8
,
E16
(
2004
).
26.
Y.
Li
,
J.
Wen
,
L.
Li
,
J.
Gao
,
Y.
Shi
,
Z.
Liu
, and
G.
Zhang
, “
Characteristics and mechanisms of streamer discharge in liquids under micro/nano-second pulsed voltages: Status and advances
,”
High Power Laser Part. Beams
33
(
06
),
065001
(
2021
).
27.
Y.
Seepersad
,
M.
Pekker
,
M. N.
Shneider
,
A.
Fridman
, and
D.
Dobrynin
, “
Investigation of positive and negative modes of nanosecond pulsed discharge in water and electrostriction model of initiation
,”
J. Phys. D: Appl. Phys.
46
,
355201
(
2013
).
28.
C.
Rond
,
J.
Desse
,
N.
Fagnon
,
X.
Aubert
,
A.
Vega
, and
X.
Duten
, “
Influence of applied voltage and electrical conductivity on underwater pin-to-pin pulsed discharge
,”
J. Phys. D: Appl. Phys.
52
,
025202
(
2019
).
29.
P.
Šunka
, “
Pulse electrical discharges in water and their applications
,”
Phys. Plasmas
8
,
2587
2594
(
2001
).
30.
Y.
Higashiyama
,
T.
Nakajima
, and
T.
Sugimoto
, “
Influence of conductivity on corona discharge current from a water droplet and on ejection of nano-sized droplets
,”
J. Electrostatics
88
,
65
70
(
2017
).
31.
G.
Touya
,
T.
Reess
,
L.
Pecastaing
,
A.
Gibert
, and
P.
Domens
, “Development of subsonic Electrical discharges in water and measurements of the associated pressure waves,”
J. Phys. D: Appl. Phys
39, 5236–5244 (2006).
32.
T.
Aka-Ngnui
and
A.
Beroual
, “
Bubble dynamics and transition into streamers in liquid dielectrics under a high divergent electric field
,”
J. Phys. D
34
,
1408
1412
(
2001
).
33.
J.
Qian
,
R.
Joshi
,
J.
Kolb
,
K.
Schoenbach
,
J.
Dickens
,
A.
Neuber
,
M.
Butcher
,
M.
Cevallos
,
H.
Krompholz
,
E.
Schamiloglu
, and
J.
Gaudet
, “
Microbubble-based model analysis of liquid breakdown initiation by a submicrosecond pulse
,”
J. Appl. Phys.
97
,
113304
(
2005
).
34.
C.
Rond
,
J. M.
Desse
,
N.
Fagnon
,
X.
Aubert
,
M.
Er
,
A.
Vega
, and
X.
Duten
, “
Time-resolved diagnostics of a pin-to-pin pulsed discharge in water: Pre-breakdown and breakdown analysis
,”
J. Phys. D: Appl. Phys
51
,
335201
(
2018
).
You do not currently have access to this content.