In this paper, the effects of pulse voltage rise time on the nanosecond pulsed breakdown of the nitrogen spark switch at atmospheric pressure are analyzed. Based on the assumption of initial electrons generation due to the field emission, the simulations are performed using a three-dimensional particle-in-cell, Monte Carlo-collision model for the pulse voltage with a rise time of 40, 60, and 100 ns, respectively. The breakdown experiments of the nitrogen spark switch are carried out for three different rise times. The results obtained are as follows. First, the nanosecond pulsed breakdown of the switch includes the formation and fast propagation of the streamer, which depend on the multiplication of the electron avalanche, and the intense ionization due to photoelectrons and energetic electrons, respectively. Second, with the rise time of pulse voltage increasing, the generation of runaway electrons becomes more difficult and the streamer branches, which are mainly caused by photoionization and captured energetic electrons, become more obvious. Finally, the breakdown time delay of the switch becomes shorter and the breakdown voltage becomes higher at the same pressure for the decreasing rise time of pulse voltage, which is consistent with the measurement results.

1.
I.
Smith
and
H.
Aslin
, “
Pulsed power for EMP simulators
,”
IEEE Trans. Electromagn. Compat.
20
(
1
),
53
59
(
1978
).
2.
W.
Gong
,
Q.
Huang
, and
Z.
Wang
, “
Effect of pulse rise time on plasma plume propagation velocity
,”
IEEE Trans. Plasma Sci.
42
(
10
),
2868
2869
(
2014
).
3.
J. I. E.
Chen
,
R.
Zhang
, and
J.
Xiao
, “
Influence of pulse rise time on the inactivation of staphylococcus aureus by pulsed electric fields
,”
IEEE Trans. Plasma Sci.
38
(
8
),
1935
1941
(
2010
).
4.
J. C.
Pouncey
and
J. M.
Lehr
, “
Triggering of pressurized gas switches with a class I laser
,”
IEEE Trans. Plasma Sci.
48
(
7
),
2531
2537
(
2020
).
5.
F.
Hegeler
,
M. C.
Myers
, and
M. F.
Wolford
, “
Low jitter, high voltage, repetitive laser triggered gas switches
,”
IEEE Trans. Dielectr. Electr. Insul.
20
(
4
),
1168
1188
(
2013
).
6.
I.
Roth
,
J. T.
Naff
, and
J.
Banister
, “
Development of a repetitive high coulomb transfer switch
,” in
7th Pulsed Power Conference
(
2002
).
7.
J. R.
Mayes
,
W. J.
Carey
, and
W. C.
Nunnally
, “
Spark gap triggering with photoconductive switches
,” in
12th IEEE International Pulsed Power Conference
(
1999
).
8.
L. J.
Demeter
,
G.
Frazier
, and
T.
Naff
, “
A low jitter triggered gas switch to synchronize modular accelerators
,”
IEEE Trans. Nucl. Sci.
28
(
3
),
2931
2933
(
1981
).
9.
S.
Li
,
Y.
Li
, and
J.
Li
, “
The experimental study of breakdown features for the field distortion spark gap with optimized electrodes
,”
J. Huazhong Univ. Sci. Technol.
29
(
3
),
4
13
(
2001
).
10.
H.
Golnabi
, “
The study of breakdown voltages for triggered spark gap switches
,”
Int. J. Eng.
9
,
143
150
(
1996
).
11.
F.
Guo
,
S.
He
, and
W.
Jia
, “
Experimental study on breakdown time delay of hundreds of nanoseconds pulse under different du/dt for mm gaps
,”
IEEE Trans. Plasma Sci.
47
(
10
),
4579
4583
(
2019
).
12.
F.
Zeng
,
L. I.
Song
, and
H.
Cai
, “
Investigation on the electrode surface roughness effects on a repetitive self-breakdown gas switch
,”
Plasma Sci. Technol.
24
(
6
),
065506
(
2022
).
13.
S.
Zhrer
,
M.
Golizadeh
, and
N.
Koutná
, “
Erosion and cathodic arc plasma of Nb–Al cathodes: Composite versus intermetallic
,”
Plasma Sci. Technol.
29
(
2
),
025022
(
2020
).
14.
S. J.
Macgregor
,
F. A.
Tuema
, and
S. M.
Turnbull
, “
The influence of polarity on trigatron switching performance
,”
IEEE Trans. Plasma Sci.
25
(
2
),
118
123
(
1997
).
15.
V. A.
Shklyaev
and
V. V.
Ryzhov
, “
Effect of cathode emissivity on runaway electron beam formation in gas-filled diode with inhomogeneous electric field
,”
Tech. Phys. Lett.
37
(
1
),
72
74
(
2011
).
16.
N. Y.
Babaeva
,
C.
Zhang
, and
J.
Qiu
, “
The role of fast electrons in diffuse discharge formation: Monte Carlo simulation
,”
Plasma Sci. Technol.
26
(
8
),
085008
(
2013
).
17.
S. O.
Macheret
and
M. N.
Shneider
, “
Kinetic modeling of the Townsend breakdown in argon
,”
Phys. Plasmas
20
(
10
),
101608
(
2013
).
18.
A.
Kozyrev
and
V.
Tarasenko
, “
Theoretical simulation of the picosecond runaway-electron beam in coaxial diode filled with SF6 at atmospheric pressure
,”
Europhys. Lett.
114
,
45001
(
2016
).
19.
I. A.
Kossyi
,
A. Y.
Kostinsky
, and
A. A.
Matveyev
, “
Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures
,”
Plasma Sci. Technol.
1
(
3
),
207
220
(
1992
).
20.
J.
Poggie
,
I.
Adamovich
, and
N.
Bisek
, “
Numerical simulation of nanosecond-pulse electrical discharges
,”
Plasma Sci. Technol.
22
(
1
),
015001
(
2012
).
21.
J.
Li
,
W.
Chen
, and
Z.
Chen
, “
Influences of electric field on the jitter of ultraviolet-illuminated switch under pulsed voltages
,”
Phys. Plasmas
21
(
3
),
033509
(
2014
).
22.
M.
Qian
,
G.
Li
, and
S.
Liu
, “
Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure
,”
Plasma Sci. Technol.
19
(
6
),
064015
(
2017
).
23.
A.
Komuro
,
T.
Ryu
, and
A.
Yoshino
, “
Streamer propagation in atmospheric-pressure air: Effect of the pulse voltage rise rate from 0.1 to 100 kV ns−1 and streamer inception voltage
,”
J. Phys. D
54
(
36
),
364004
(
2021
).
24.
D. S.
Nikandrov
,
L. D.
Tsendin
, and
V. I.
Kolobov
, “
Theory of pulsed breakdown of dense gases and optimization of the voltage waveform
,”
IEEE Trans. Plasma Sci.
36
(
1
),
131
139
(
2008
).
25.
A. M.
Boichenko
,
A. G.
Burachenko
, and
I. D.
Kostyrya
, “
On the influence of the voltage pulse rise time and cathode geometry on the generation of a supershort avalanche electron beam
,”
Tech. Phys.
56
(
8
),
1202
1209
(
2011
).
26.
L.
Yongdong
,
H.
Feng
, and
L.
Chunliang
, “
A volume-weighting cloud-in-cell model for particle simulation of axially symmetric plasmas
,”
Plasma Sci. Technol.
7
(
1
),
2653
2656
(
2005
).
27.
O.
Chanrion
and
T.
Neubert
, “
A PIC-MCC code for simulation of streamer propagation in air
,”
J. Comput. Phys.
227
(
15
),
7222
7245
(
2008
).
28.
C.
Li
,
U.
Ebert
, and
W.
Hundsdorfer
, “
Spatially hybrid computations for streamer discharges—II: Fully 3D simulations
,”
J. Comput. Phys.
231
(
3
),
1020
1050
(
2012
).
29.
B. J. P.
Dowds
,
R. K.
Barrett
, and
D. A.
Diver
, “
Streamer initiation in atmospheric pressure gas discharges by direct particle simulation
,”
Phys. Rev. E
68
,
026412
(
2003
).
30.
M.
Jiang
,
Y.
Li
, and
H.
Wang
, “
3D PIC-MCC simulations of positive streamers in air gaps
,”
Phys. Plasmas
24
(
10
),
102112
(
2017
).
31.
M. B.
Zhelezniak
,
A. K.
Mnatsakanian
, and
S. V.
Sizykh
, “
Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge
,”
Teplofiz. Vys. Temp.
20
(
3
),
423
428
(
1982
).
32.
M.
Jiang
,
Y.
Li
, and
H.
Wang
, “
A photoionization model considering lifetime of high excited states of N2 for PIC-MCC simulations of positive streamers in air
,”
Phys. Plasmas
25
(
1
),
012127
(
2018
).
33.
F. F.
Rieke
and
W.
Prepejchal
, “
Ionization cross sections of gaseous atoms and molecules for high-energy electrons and positrons
,”
Phys. Rev. A
6
(
4
),
1507
1519
(
1972
).
34.
See www.lxcat.net for “
IST-Lisbon database.
35.
See www.lxcat.net for “
Morgan database.
36.
Y.
Itikawa
, “
Cross sections for electron collisions with nitrogen molecules
,”
J. Phys. Chem. Ref. Data
35
(
1
),
31
53
(
2006
).
37.
W. C. Y.
Robert
,
H.-S.
Fung
, and
K.-Y.
Chang
, “
EUV resonance fluorescence of the c′4→X (0,v″) and b′→X (1,v″) transitions of N2
,”
Planet. Space Sci.
56
(
13
),
1725
1732
(
2008
).
38.
J. A.
Fennelly
and
D. G.
Torr
, “
Photoionization and photoabsorption cross sections of O, N2, O2, and N for aeronomic calculations
,”
At. Data Nucl. Data Tables
51
(
2
),
321
363
(
1992
).
39.
T. M. P.
Briels
,
E. M.
Van Veldhuizen
, and
U.
Ebert
, “
Branching of positive discharge streamers in air at varying pressures
,”
IEEE Trans. Plasma Sci.
33
(
2
),
264
265
(
2005
).
40.
E. M.
van Veldhuizen
and
W. R.
Rutgers
, “
Pulsed positive corona streamer propagation and branching
,”
J. Phys. D
35
(
17
),
2169
2179
(
2002
).
41.
M.
Jiang
,
Y.
Li
, and
H.
Wang
, “
3D PIC-MCC simulation of corona discharge in needle-plate electrode with external circuit
,”
Plasma Sci. Technol.
29
(
1
),
015020
(
2020
).
42.
D.
Levko
,
R. R.
Arslanbekov
, and
V. I.
Kolobov
, “
Multi-scale dynamics of atmospheric-pressure discharges ignited over liquid electrodes
,”
J. Appl. Phys.
127
(
4
),
043301
(
2020
).
43.
D.
Levko
, “
Mechanism of sub-nanosecond pulsed breakdown of pressurized nitrogen
,”
J. Appl. Phys.
126
(
8
),
083303
(
2019
).
44.
N. L.
Aleksandrov
and
E. M.
Bazelyan
, “
Streamer breakdown of long gas gaps
,”
Plasma Phys. Rep.
27
(
12
),
1057
1078
(
2001
).
45.
L. P.
Babich
, “
High-energy phenomena in electric discharges in dense gases: Theory, experiment and natural phenomena
,” (Arlington: Futurepast Inc, 2003).
46.
A. V.
Gurevich
and
K. P.
Zybin
, “
Runaway breakdown and electric discharges in thunderstorms
,”
Phys.-Usp.
44
(
11
),
1119
1140
(
2001
).
47.
Z.
Cheng
,
S.
Tao
, and
N.
Zheng
, “
Study of X-ray radiation characteristics in repetitive frequency nanosecond pulse discharges for tip-plate electrode structures at atmospheric pressure
,”
Acta Phys. Sin.
61
(
3
),
305
313
(
2012
).
48.
S.
Tao
,
S.
Guangsheng
, and
Y.
Ping
, “
Calculation of runaway processes of high-energy fast electron for nanosecond pulses
,”
Acta Phys. Sin.
55
(
11
),
5964
5968
(
2006
).
49.
D.
Levko
and
L. L.
Raja
, “
On the production of energetic electrons at the negative streamer head at moderate overvoltage
,”
Phys. Plasmas
24
(
12
),
124503
(
2017
).
You do not currently have access to this content.