The characteristics of atmospheric pressure Ar-plasma such as the spatial distributions of number densities, fluxes, and temperatures of electrons and heavy plasma particles, as well as the spatial distribution of electric potential around an individual spherical particle, were studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations were formulated for plasma that is not in thermal and ionization equilibrium. The boundary conditions near the particle were set on the edge of the space charge layer (sheath) adjacent to the particle surface. The nonlinear problem was solved taking into account the temperature dependencies of transport and kinetic coefficients. The heat flux introduced by the plasma into the particle was calculated and compared with the results of the simple heat conduction model. The range 10 − 5 – 10 − 4 m of particle radius and the range 6–18 kK of unperturbed plasma temperature were considered.

1.
P. K.
Shukla
and
A. A.
Mamun
,
Introduction to Dusty Plasma Physics
(
IoP Publishing Ltd.
,
London
,
2002
).
2.
R. L.
Merlino
and
J. A.
Goree
, “
Dusty plasmas in the laboratory, industry, and space
,”
Phys. Today
57
(
7
),
32
39
(
2004
).
3.
S. V.
Vladimirov
and
K.
Ostrikov
, “
Dynamic self-organization phenomena in complex ionized gas systems: New paradigms and technological aspects
,”
Phys. Rep.
393
,
175
380
(
2004
).
4.
V.
Fortov
,
A.
Ivlev
,
S.
Khrapak
,
A.
Khrapak
, and
G.
Morfill
, “
Complex (dusty) plasmas: Current status, open issues, perspectives
,”
Phys. Rep.
421
,
1
103
(
2005
).
5.
A.
Melzer
and
J.
Goree
, “
Fundamentals of dusty plasmas
,” in
Low Temperature Plasmas: Fundamentals, Technologies, and Techniques
(
Wiley-VCH
,
2008
), Chap. 6.
6.
G. E.
Morfill
and
A. V.
Ivlev
, “
Complex plasmas: An interdisciplinary research field
,”
Rev. Mod. Phys.
81
,
1353
1404
(
2009
).
7.
A.
Melzer
,
Physics of Dusty Plasmas
(
Springer
,
2019
).
8.
M.
Pustylnik
,
A.
Pikalev
,
A.
Zobnin
,
I.
Semenov
,
H.
Thomas
, and
O.
Petrov
, “
Physical aspects of dust-plasma interactions
,”
Contrib. Plasma Phys.
61
,
e202100126
(
2021
).
9.
V. I.
Demidov
,
S. V.
Ratynskaia
, and
K.
Rypdal
, “
Electric probes for plasmas: The link between theory and instrument
,”
Rev. Sci. Instrum.
73
,
3409
3439
(
2002
).
10.
D.
Darian
,
S.
Marholm
,
M.
Mortensen
, and
W. J.
Miloch
, “
Theory and simulations of spherical and cylindrical Langmuir probes in non-Maxwellian plasmas
,”
Plasma Phys. Controlled Fusion
61
,
085025
(
2019
).
11.
J.
Benedikt
,
H.
Kersten
, and
A.
Piel
, “
Foundations of measurement of electrons, ions and species fluxes toward surfaces in low-temperature plasmas
,”
Plasma Sources Sci. Technol.
30
,
033001
(
2021
).
12.
M.
Lampe
,
G.
Joyce
,
G.
Ganguli
, and
V.
Gavrishchaka
, “
Interactions between dust grains in a dusty plasma
,”
Phys. Plasmas
7
,
3851
3861
(
2000
).
13.
I. L.
Semenov
,
S. A.
Khrapak
, and
H. M.
Thomas
, “
Approximate expression for the electric potential around an absorbing particle in isotropic collisionless plasma
,”
Phys. Plasmas
22
,
053704
(
2015
).
14.
A. V.
Filippov
,
A. G.
Zagorodny
,
A. F.
Pal'
,
A. N.
Starostin
, and
A. I.
Momot
, “
Kinetic description of the screening of the charge of macroparticles in a nonequilibrium plasma
,”
JETP Lett.
86
,
761
766
(
2008
).
15.
S. A.
Khrapak
,
B. A.
Klumov
, and
G. E.
Morfill
, “
Electric potential around an absorbing body in plasmas: Effect of ion-neutral collisions
,”
Phys. Rev. Lett.
100
,
225003
(
2008
).
16.
I. L.
Semenov
,
A. G.
Zagorodny
, and
I. V.
Krivtsun
, “
On the effect of ion-neutral collisions on dust grain screening in a low-pressure gas discharge plasma
,”
Phys. Plasmas
19
,
043703
(
2012
).
17.
R.
Moulick
and
K. S.
Goswami
, “
Potential around a dust grain in collisional plasma
,”
Phys. Plasmas
22
,
043701
(
2015
).
18.
C. H.
Su
and
S. H.
Lam
, “
Continuum theory of spherical electrostatic probes
,”
Phys. Fluids
6
,
1479
1491
(
1963
).
19.
O.
Bystrenko
and
A.
Zagorodny
, “
Screening of dust grains in a weakly ionized gas: Effects of charging by plasma currents
,”
Phys. Rev. E
67
,
066403
(
2003
).
20.
S. A.
Khrapak
,
G. E.
Morfill
,
V. E.
Fortov
,
L. G.
D'yachkov
,
A. G.
Khrapak
, and
O. F.
Petrov
, “
Attraction of positively charged particles in highly collisional plasmas
,”
Phys. Rev. Lett.
99
,
055003
(
2007
).
21.
I. L.
Semenov
,
A. G.
Zagorodny
, and
I. V.
Krivtsun
, “
A study of dust grain screening in a weakly ionized plasma based on the numerical solution of the Vlasov-Bhatnagar-Gross-Krook kinetic equations
,”
Phys. Plasmas
18
,
103707
(
2011
).
22.
P.
Tolias
and
S.
Ratynskaia
, “
Screening in weakly ionized dusty plasmas; Effect of dust density perturbations
,”
Phys. Plasmas
20
,
023702
(
2013
).
23.
A. I.
Momot
,
A. G.
Zagorodny
, and
I. S.
Orel
, “
Interaction force between two finite-size charged particles in weakly ionized plasma
,”
Phys. Rev. E
95
,
013212
(
2017
).
24.
M. I.
Boulos
,
P.
Fauchais
, and
E.
Pfender
,
Thermal Plasmas: Fundamentals and Applications
(
Plenum Press
,
1994
).
25.
M. I.
Boulos
,
P. L.
Fauchais
, and
E.
Pfender
,
Handbook of Thermal Plasmas
(
Springer
,
2019
).
26.
P.
Fauchais
, “
Understanding plasma spraying
,”
J. Phys. D
37
,
R86
R108
(
2004
).
27.
P. L.
Fauchais
,
J. V.
Heberlein
, and
M. I.
Boulos
,
Thermal Spray Fundamentals: From Powder to Part
(
Springer
,
2014
).
28.
M. S.
Benilov
, “
Modeling the physics of interaction of high-pressure arcs with their electrodes: Advances and challenges
,”
J. Phys. D
53
,
013002
(
2019
).
29.
N. A.
Almeida
,
M. S.
Benilov
, and
G. V.
Naidis
, “
Unified modelling of near-cathode plasma layers in high-pressure arc discharges
,”
J. Phys. D
41
,
245201
(
2008
).
30.
A. B.
Murphy
, “
The effects of metal vapour in arc welding
,”
J. Phys. D
43
,
434001
(
2010
).
31.
I. L.
Semenov
,
I. V.
Krivtsun
, and
U.
Reisgen
, “
Numerical study of the anode boundary layer in atmospheric pressure arc discharges
,”
J. Phys. D
49
,
105204
(
2016
).
32.
O.
Mokrov
,
M.
Simon
,
R.
Sharma
, and
U.
Reisgen
, “
Arc-cathode attachment in GMA welding
,”
J. Phys. D
52
,
364003
(
2019
).
33.
A.
Khrabry
,
I. D.
Kaganovich
,
V.
Nemchinsky
, and
A.
Khodak
, “
Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions
,”
Phys. Plasmas
25
,
013521
(
2018
).
34.
A.
Khrabry
,
I. D.
Kaganovich
,
V.
Nemchinsky
, and
A.
Khodak
, “
Investigation of the short argon arc with hot anode. II. Analytical model
,”
Phys. Plasmas
25
,
013522
(
2018
).
35.
E.
Leveroni
and
E.
Pfender
, “
A unified approach to plasma-particle heat transfer under non-continuum and non-equilibrium conditions
,”
Int. J. Heat Mass Transfer
33
,
1497
1509
(
1990
).
36.
V.
Nemchinsky
, “
Heat transfer to a spherical particle in a flowing plasma
,”
J. Phys. D
43
,
215201
(
2010
).
37.
P.
Fauchais
,
M.
Vardelle
, and
S.
Goutier
, “
Atmospheric plasma spraying evolution since the sixties through modeling, measurements and sensors
,”
Plasma Chem. Plasma Process.
37
,
601
626
(
2017
).
38.
H. R.
Maurer
and
H.
Kersten
, “
On the heating of nano- and microparticles in process plasmas
,”
J. Phys. D
44
,
174029
(
2011
).
39.
S.
Bornholdt
,
M.
Fröhlich
, and
H.
Kersten
, “
Calorimetric probes for energy flux measurements in process plasmas
,” in
Complex Plasmas: Scientific Challenges and Technological Opportunities
, edited by
M.
Bonitz
,
J.
Lopez
,
K.
Becker
, and
H.
Thomsen
(
Springer International Publishing
,
Cham
,
2014
), pp.
197
234
.
40.
H. R.
Maurer
,
M.
Hannemann
,
R.
Basner
, and
H.
Kersten
, “
Measurement of plasma-surface energy fluxes in an argon rf-discharge by means of calorimetric probes and fluorescent microparticles
,”
Phys. Plasmas
17
,
113707
(
2010
).
41.
S. A.
Khrapak
and
G. E.
Morfill
, “
Grain surface temperature in noble gas discharges: Refined analytical model
,”
Phys. Plasmas
13
,
104506
(
2006
).
42.
V. M.
Zhdanov
,
Transport Processes in Multicomponent Plasma
(
CRC Press
,
2002
).
43.
See http://www.pdesolutions.com for detailed information about FlexPDE program.
44.
I.
Denysenko
and
K.
Ostrikov
, “
Plasma heating effects in catalyzed growth of carbon nanofibres
,”
J. Phys. D
42
,
015208
(
2008
).
45.
R. S.
Devoto
, “
Transport coefficients of ionized argon
,”
Phys. Fluids
16
,
616
623
(
1973
).
46.
L. C.
Pitchford
,
L. L.
Alves
,
K.
Bartschat
,
S. F.
Biagi
,
M. C.
Bordage
,
A. V.
Phelps
,
C. M.
Ferreira
,
G. J. M.
Hagelaar
,
W. L.
Morgan
,
S.
Pancheshnyi
,
V.
Puech
,
A.
Stauffer
, and
O.
Zatsarinny
, “
Comparisons of sets of electron–neutral scattering cross sections and swarm parameters in noble gases: I. Argon
,”
J. Phys. D
46
,
334001
(
2013
).
47.
See http://nl.lxcat.net for electron elastic scattering cross section in argon.
48.
M.
Mitchner
and
C. H.
Kruger
, Jr.
,
Partially Ionized Gases
(
John Wiley and Sons, Inc
.,
New York
,
1973
).
49.
V. A.
Rozhanskii
and
L. D.
Tsendin
,
Collisional Transfer in a Partially Ionized Plasma
(
Energoizdat
,
Moscow
,
1988
).
50.
W. S.
Liu
,
B. T.
Whitten
, and
I. I.
Glass
, “
Ionizing argon boundary layers. Part 1. Quasi-steady flat-plate laminar boundary-layer flows
,”
J. Fluid Mech.
87
,
609
640
(
1978
).
51.
M. S.
Benilov
and
G. V.
Naidis
, “
Ionization layer at the edge of a fully ionized plasma
,”
Phys. Rev. E
57
,
2230
2241
(
1998
).
52.
L.
Biberman
,
V.
Vorob'ev
, and
I.
Yakubov
,
Kinetics of Nonequilibrium Low-Temperature Plasmas
(
Springer
,
1987
).
You do not currently have access to this content.