A 2D-3V finite-element particle-in-cell model, which is applied to simulate the radial-azimuthal plane near the exit of Hall thrusters, has been presented to investigate the influence of axial oscillation on electron cyclotron drift instability (ECDI) and anomalous cross field electron transports. The simplified theoretical analysis about the ECDI and the anomalous electron transport has been introduced. The uniform and harmonic axial electric fields, which are based on the typical axial oscillations in Hall thrusters, have been considered in the simulations. It is concluded that different constant axial electric fields can influence the properties of instability but cannot significantly change the cross field electron mobility. However, the axial oscillation plays a significant role in the instability, and the electron transports provided that appropriate amplitudes and frequencies are achieved. The equilibrium of the instability is destroyed and reformed with the axial oscillation. The cross field electron transports are enhanced in the range of low amplitudes and frequencies and are suppressed when they are in a high value. In addition, it is observed that the variation of the electron mobility and electron–ion friction force show high consistency with the trend of electron temperature. It is further confirmed that the increase in electron temperature takes responsibility for the enhanced cross field electron transport due to the axial oscillation.

1.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Wiley
,
New York
,
2008
), Vol.
1
.
2.
J. P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
3.
I. D.
Kaganovich
,
A.
Smolyakov
,
Y.
Raitses
,
E.
Ahedo
,
I. G.
Mikellides
,
B.
Jorns
,
F.
Taccogna
,
R.
Gueroult
,
S.
Tsikata
,
A.
Bourdon
et al, “
Physics of E×B discharges relevant to plasma propulsion and similar technologies
,”
Phys. Plasmas
27
,
120601
(
2020
).
4.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
, “
Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic model
,”
Phys. Plasmas
23
,
053503
(
2016
).
5.
V.
Croes
,
T.
Lafleur
,
Z.
Bonaventura
,
A.
Bourdon
, and
P.
Chabert
, “
2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters
,”
Plasma Sources Sci. Technol.
26
,
034001
(
2017
).
6.
T.
Lafleur
and
P.
Chabert
, “
The role of instability-enhanced friction on anomalous electron and ion transport in Hall-effect thrusters
,”
Plasma Sources Sci. Technol.
27
,
015003
(
2017
).
7.
J. C.
Adam
,
A.
Héron
, and
G.
Laval
, “
Study of stationary plasma thrusters using two-dimensional fully kinetic simulations
,”
Phys. Plasmas
11
,
295
(
2004
).
8.
P.
Coche
and
L.
Garrigues
, “
A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster
,”
Phys. Plasmas
21
,
023503
(
2014
).
9.
F.
Taccogna
,
P.
Minelli
,
Z.
Asadi
, and
G.
Bogopolsky
, “
Numerical studies of the E×B electron drift instability in Hall thrusters
,”
Plasma Sources Sci. Technol.
28
,
064002
(
2019
).
10.
S.
Janhunen
,
A.
Smolyakov
,
D.
Sydorenko
,
M.
Jimenez
,
I.
Kaganovich
, and
Y.
Raitses
, “
Evolution of the electron cyclotron drift instability in two-dimensions
,”
Phys. Plasmas
25
,
082308
(
2018
).
11.
S.
Janhunen
,
A.
Smolyakov
,
O.
Chapurin
,
D.
Sydorenko
,
I.
Kaganovich
, and
Y.
Raitses
, “
Nonlinear structures and anomalous transport in partially magnetized E×B plasmas
,”
Phys. Plasmas
25
,
011608
(
2018
).
12.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
, “
Characteristics and transport effects of the electron drift instability in Hall-effect thrusters
,”
Plasma Sources Sci. Technol.
26
,
024008
(
2017
).
13.
K.
Hara
and
S.
Tsikata
, “
Cross-field electron diffusion due to the coupling of drift-driven microinstabilities
,”
Phys. Rev. E
102
,
023202
(
2020
).
14.
W.
Villafana
,
F.
Petronio
,
A. C.
Denig
,
A. C.
Deniq
,
M. J.
Jimenez
,
D.
Eremin
,
L.
Garriques
,
F.
Taccogna
,
A. A.
Laquna
,
J. P.
Boeuf
,
A.
Bourdon
et al, “
2D radial-azimuthal particle-in-cell benchmark for E×B discharges
,”
Plasma Sources Sci. Technol.
30
,
075002
(
2021
).
15.
E. Y.
Choueiri
, “
Plasma oscillations in Hall thrusters
,”
Phys. Plasmas
8
,
1411
(
2001
).
16.
S.
Barral
and
E.
Ahedo
, “
Low-frequency model of breathing oscillations in Hall discharges
,”
Phys. Rev. E
79
,
046401
(
2009
).
17.
J.
Bareilles
,
G. J. M.
Hagelaar
,
L.
Garrigues
,
C.
Boniface
,
J. P.
Boeuf
, and
N.
Gascon
, “
Critical assessment of a two-dimensional hybrid Hall thruster model: Comparisons with experiments
,”
Phys. Plasmas
11
,
3035
(
2004
).
18.
J. P.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
(
1998
).
19.
S.
Barral
,
K.
Makowski
,
Z.
Peradzyński
, and
M.
Dudeck
, “
Transit-time instability in Hall thrusters
,”
Phys. Plasmas
12
,
073504
(
2005
).
20.
I. M.
DesJardin
,
K.
Hara
, and
S.
Tsikata
, “
Self-organized standing waves generated by AC-driven electron cyclotron drift instabilities
,”
Appl. Phys. Lett.
115
,
234103
(
2019
).
21.
D.
Fujita
,
R.
Kawashima
,
Y.
Ito
,
S.
Akaqi
,
J.
Suzuki
,
T.
Schönherr
,
H.
Koizumi
, and
K.
Komurasaki
, “
Operating parameters and oscillation characteristics of an anode-layer Hall thruster with argon propellant
,”
Vacuum
110
,
159
(
2014
).
22.
V.
Croes
,
A.
Tavant
,
R.
Lucken
,
R.
Nartorelli
,
T.
Lafleur
,
A.
Bourdon
, and
P.
Chabert
, “
The effect of alternative propellants on the electron drift instability in Hall-effect thrusters: Insight from 2D particle-in-cell simulations
,”
Phys. Plasmas
25
,
063522
(
2018
).
23.
A.
Tavant
,
V.
Croes
,
R.
Lucken
,
T.
Lafleur
,
A.
Bourdon
, and
P.
Chabert
, “
The effects of secondary electron emission on plasma sheath characteristics and electron transport in an discharge via kinetic simulations
,”
Plasma Sources Sci. Technol.
27
,
124001
(
2018
).
24.
A.
Ducrocq
,
J. C.
Adam
,
A.
Héron
, and
G.
Laval
, “
High-frequency electron drift instability in the cross-field configuration of Hall thrusters
,”
Phys. Plasmas
13
,
102111
(
2006
).
25.
J.
Cavalier
,
N.
Lemoine
,
G.
Bonhomme
,
S.
Tsikata
,
C.
Honoré
, and
D.
Grésillon
, “
Hall thruster plasma fluctuations identified as the E×B electron drift instability: Modeling and fitting on experimental data
,”
Phys. Plasmas
20
,
082107
(
2013
).
26.
Y.
Cao
,
Y.
Chu
,
X.
He
, and
T.
Lin
, “
An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity
,”
J. Comput. Phys.
281
,
82
(
2015
).
27.
H.
Cao
,
Y.
Cao
,
Y.
Chu
,
X.
He
, and
T.
Lin
, “
A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface
,”
Commun. Nonlinear Sci.
59
,
132
(
2018
).
28.
J.
Bai
,
Y.
Cao
,
Y.
Chu
, and
X.
Zhang
, “
An improved immersed finite element particle-in-cell method for plasma simulation
,”
Comput. Math. Appl.
75
,
1887
(
2018
).
29.
Y.
Cao
,
Y.
Chu
,
X.
Zhang
, and
X.
Zhang
, “
Immersed finite element methods for unbounded interface problems with periodic structures
,”
J. Comput. Appl. Math.
307
,
72
(
2016
).
30.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
CRC Press
,
Boca Raton
,
2018
).
31.
H. K.
Malik
and
S.
Singh
, “
Conditions and growth rate of Rayleigh instability in a Hall thruster under the effect of ion temperature
,”
Phys. Rev. E
83
,
036406
(
2011
).
32.
A.
Smirnov
,
Y.
Raitses
, and
N. J.
Fisch
, “
Parametric investigation of miniaturized cylindrical and annular Hall thrusters
,”
J. Appl. Phys.
92
,
5673
(
2002
).
You do not currently have access to this content.