A bias power is usually applied in inductively coupled plasmas (ICP) to realize the separate control of the plasma density and the ion energy. In this research, a two-dimensional fluid/electron Monte Carlo hybrid model is developed to self-consistently investigate the bias effect on the stochastic heating and on the radial homogeneity in a biased argon ICP operated at low pressure (3 mTorr). The results show that the temporal evolution of the stochastic heating exhibits a plateau and a peak when the sheath collapses at high bias voltages, due to the limited sheath heating and the electron inertia. In addition, the plasma density in the diffusion chamber increases with bias voltage and bias frequency, because of the more pronounced stochastic heating both at the substrate and at the grounded wall. In the main discharge chamber, the plasma density decreases with bias voltage, due to the compression of the bulk plasma region, and this trend becomes less obvious at high bias frequency, because of the enhanced power absorption caused by the stochastic heating. Therefore, it is concluded that by tuning the bias voltage and bias frequency, the plasma radial uniformity could be modulated efficiently, which is very important for improving plasma processing.

1.
H.-C.
Lee
,
Appl. Phys. Rev.
5
,
011108
(
2018
).
2.
J. A.
Stittsworth
and
A. E.
Wendt
,
Plasma Sources Sci. Technol.
5
,
429
(
1996
).
3.
M. J.
Kushner
,
W. Z.
Collison
,
M. J.
Grapperhaus
,
J. P.
Holland
, and
M. S.
Barnes
,
J. Appl. Phys.
80
,
1337
(
1996
).
4.
I. C.
Abraham
,
J. R.
Woodworth
,
M. E.
Riley
,
P. A.
Miller
,
R. J.
Shul
, and
C. G.
Willison
,
J. Vac. Sci. Technol. B
21
,
1112
(
2003
).
5.
E. A.
Edelberg
and
E. S.
Aydil
,
J. Appl. Phys.
86
,
4799
(
1999
).
6.
D.-Q.
Wen
,
W.
Liu
,
F.
Gao
,
M. A.
Lieberman
, and
Y.-N.
Wang
,
Plasma Sources Sci. Technol.
25
,
045009
(
2016
).
7.
E. A.
Edelberg
,
A.
Perry
,
N.
Benjamin
, and
E. S.
Aydil
,
Rev. Sci. Instrum.
70
,
2689
(
1999
).
8.
A.
Ochoa Brezmes
and
C.
Breitkopf
,
Vacuum
109
,
52
(
2014
).
9.
Y.-R.
Zhang
,
Z.-Z.
Zhao
,
C.
Xue
,
F.
Gao
, and
Y.-N.
Wang
,
J. Phys. D
52
,
295204
(
2019
).
10.
R. J.
Hoekstra
and
M. J.
Kushner
,
J. Appl. Phys.
79
,
2275
(
1996
).
11.
T.
Faraz
,
K.
Arts
,
S.
Karwal
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
Plasma Sources Sci. Technol.
28
,
024002
(
2019
).
12.
C.
Xue
,
F.
Gao
,
Y.-X.
Liu
,
J.
Liu
, and
Y.-N.
Wang
,
Chin. Phys. B
27
,
045202
(
2018
).
13.
C.
Han
,
Y.
Yang
,
W.
Liu
,
Y.
Lu
, and
J.
Cheng
,
SPIN
8
,
1850002
(
2018
).
14.
M.
Brihoum
,
G.
Cunge
,
M.
Darnon
,
D.
Gahan
,
O.
Joubert
, and
N. S. J.
Braithwaite
,
J. Vac. Sci. Technol. A
31
,
020604
(
2013
).
15.
A.
Agarwal
,
P. J.
Stout
,
S.
Banna
,
S.
Rauf
,
K.
Tokashiki
,
J.-Y.
Lee
, and
K.
Collins
,
J. Appl. Phys.
106
,
103305
(
2009
).
16.
A. N.
Kropotkin
and
D. G.
Voloshin
,
Phys. Plasmas
27
,
053507
(
2020
).
17.
D. C.
Kwon
,
W. S.
Chang
,
M.
Park
,
D. H.
You
,
M. Y.
Song
,
S. J.
You
,
Y. H.
Im
, and
J.-S.
Yoon
,
J. Appl. Phys.
109
,
073311
(
2011
).
18.
H.
Lee
,
K.-H.
Kim
,
J. I.
Seo
, and
C.-W.
Chung
,
Phys. Plasmas
27
,
093508
(
2020
).
19.
A.
Zhang
,
M.-Y.
Lee
,
H.-W.
Lee
,
H.-J.
Moon
, and
C.-W.
Chung
,
Plasma Sources Sci. Technol.
30
,
025009
(
2021
).
20.
H.-C.
Lee
,
M.-H.
Lee
, and
C.-W.
Chung
,
Appl. Phys. Lett.
96
,
071501
(
2010
).
21.
H.-C.
Lee
,
J.-Y.
Bang
, and
C.-W.
Chung
,
Thin Solid Films
519
,
7009
(
2011
).
22.
H.-S.
Jun
,
D.-S.
Lee
, and
H.-Y.
Chang
,
Jpn. J. Appl. Phys.
52
,
100205
(
2013
).
23.
S.-G.
Kim
,
K.-C.
Yang
,
Y.-J.
Shin
,
K.-N.
Kim
,
D.-W.
Kim
,
J. Y.
Lee
,
Y.
Kim
, and
G.-Y.
Yeom
,
Nanotechnology
31
,
265302
(
2020
).
24.
J.
Kim
,
G.
Choi
, and
K.
Kwon
,
Plasma Processes Polym.
20
,
2200167
(
2023
).
25.
H. W.
Cheong
,
W. H.
Lee
,
J. W.
Kim
,
W. S.
Kim
, and
K. W.
Whang
,
Plasma Sources Sci. Technol.
23
,
065051
(
2014
).
26.
H.-C.
Lee
and
C.-W.
Chung
,
Appl. Phys. Lett.
101
,
244104
(
2012
).
27.
M. A.
Sobolewski
and
J.-H.
Kim
,
J. Appl. Phys.
102
,
113302
(
2007
).
28.
E. A.
Kralkina
,
P. A.
Nekliudova
,
V. B.
Pavlov
,
A. K.
Petrov
, and
K. V.
Vavilin
,
Plasma Sources Sci. Technol.
26
,
055006
(
2017
).
29.
E.
Kawamura
,
D. B.
Graves
, and
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
20
,
035009
(
2011
).
30.
X.-J.
Si
,
S.-X.
Zhao
,
X.
Xu
,
A.
Bogaerts
, and
Y.-N.
Wang
,
Phys. Plasmas
18
,
033504
(
2011
).
31.
E. P.
Hammond
,
K.
Mahesh
, and
P.
Moin
,
J. Comput. Phys.
176
,
402
(
2002
).
32.
P. J.
Chantry
,
J. Appl. Phys.
62
,
1141
(
1987
).
33.
W.
Yang
,
F.
Gao
, and
Y.-N.
Wang
,
AIP Adv.
12
,
055222
(
2022
).
34.
M.
Park
,
H.-Y.
Chang
,
S.-J.
You
,
J.-H.
Kim
, and
Y.-H.
Shin
,
Phys. Plasmas
18
,
103510
(
2011
).
35.
M.
Kurokawa
,
M.
Kitajima
,
K.
Toyoshima
,
T.
Kishino
,
T.
Odagiri
,
H.
Kato
,
M.
Hoshino
,
H.
Tanaka
, and
K.
Ito
,
Phys. Rev. A
84
,
062717
(
2011
).
36.
F. J.
de Heer
,
R. H. J.
Jansen
, and
W.
van der Kaay
,
J. Phys. B
12
,
979
(
1979
).
37.
38.
R.
Rejoub
,
B. G.
Lindsay
, and
R. F.
Stebbings
,
Phys. Rev. A
65
,
042713
(
2002
).
39.
M. A.
Ali
and
P. M.
Stone
,
Int. J. Mass Spectrom.
271
,
51
(
2008
).
40.
G. J. M.
Hagelaar
,
Z.
Donko
, and
N.
Dyatko
,
Phys. Rev. Lett.
123
,
025004
(
2019
).
41.
K.
Nanbu
,
IEEE Trans. Plasma Sci.
28
,
20
(
2000
).
42.
A.
Okhrimovskyy
,
A.
Bogaerts
, and
R.
Gijbels
,
Phys. Rev. E
65
,
037402
(
2002
).
43.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
(
1995
).
44.
C. B.
Opal
,
W. K.
Peterson
, and
E. C.
Beaty
,
Chem. Phys.
55
,
4100
(
1971
).
45.
A. V.
Vasenkov
and
M. J.
Kushner
,
Phys. Rev. E
66
,
066411
(
2002
).
46.
H.
Wang
,
W.
Jiang
, and
Y.
Wang
,
Plasma Sources Sci. Technol.
19
,
045023
(
2010
).
47.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
48.
R. P.
Brinkmann
,
J. Appl. Phys.
102
,
093303
(
2007
).
49.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
2005
).
50.
B.
Berger
,
T.
Steinberger
,
E.
Schüngel
,
M.
Koepke
,
T.
Mussenbrock
,
P.
Awakowicz
, and
J.
Schulze
,
Appl. Phys. Lett.
111
,
201601
(
2017
).
You do not currently have access to this content.