The effects of pulse rise time on the temporal evolution of electron energy and density under repetitive nanosecond pulses in atmospheric nitrogen with 100 ppm oxygen impurities are investigated in this paper by a two-dimensional particle-in-cell/Monte Carlo collision model. It is found that the peak value of mean electron energy increases with decreasing pulse rise time in the single pulsed discharge. However, in the repetitive pulsed discharge approximated by pre-ionization, the peak value of mean electron energy no longer varies with the pulse rise time, showing a saturation trend with decreasing pulse rise time. Whether or not pre-ionization is present, the time required for the mean electron energy to reach its peak is approximately equal to the pulse rise time. It is worth noting that the presence of pre-ionization enhances the tracking ability of the mean electron energy to the pulse waveform during the pulse rise edge. Although after the peak of the pulse, the mean electron energy terminates the tracking process to pulse waveform due to the formation of high-density avalanches and even streamers, its energy decay rate gradually decreases with the increase in the pre-ionization density. Therefore, when the pulse repetitive frequency is greatly increased or the pre-ionization density is increased by other means, it is possible to achieve the complete control of the mean electron energy by pulse waveform modulation.

1.
B.
Huang
,
C.
Zhang
,
W.
Zhu
,
X.
Lu
, and
T.
Shao
, “
Ionization waves in nanosecond pulsed atmospheric pressure plasma jets in argon
,”
High Voltage
6
(
4
),
665
673
(
2020
).
2.
D. B.
Graves
, “
Low temperature plasma biomedicine: A tutorial review
,”
Phys. Plasmas
21
,
080901
(
2014
).
3.
G.
Pan
,
Z.
Tan
,
J.
Pan
,
X.
Wang
, and
C.
Shan
, “
A comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in He/O2 and in Ar/O2 at atmospheric pressure
,”
Phys. Plasmas
23
,
043508
(
2016
).
4.
Y.
Liu
,
H.
Yan
,
H.
Guo
,
Z.
Fan
,
Y.
Wang
,
Y.
Wu
, and
C.
Ren
, “
Effect of parallel magnetic field on repetitively unipolar nanosecond pulsed dielectric barrier discharge under different pulse repetition frequencies
,”
Phys. Plasmas
25
,
033519
(
2018
).
5.
Z.
Yang
,
H.
Song
,
W.
Wang
,
M.
Jia
, and
D.
Jin
, “
Thermal characterization of dielectric barrier discharge plasma actuation driven by radio frequency voltage at low pressure
,”
High Voltage
3
(
2
),
154
160
(
2018
).
6.
S.
Zhou
,
F.
Wang
, and
X.
Che
, “
Numerical study of nonequilibrium plasma assisted detonation initiation in detonation tube
,”
Phys. Plasmas
23
,
123522
(
2016
).
7.
A.
Madhukar
and
B.
Rajanikanth
, “
Augmenting NOx reduction in diesel exhaust by combined plasma/ozone injection technique: A laboratory investigation
,”
High Voltage
3
(
1
),
60
66
(
2018
).
8.
S.
Kelly
and
A.
Bogaerts
, “
Nitrogen fixation in an electrode-free microwave plasma
,”
Joule
5
,
3006
3030
(
2021
).
9.
T.
Shao
,
R.
Wang
,
C.
Zhang
, and
P.
Yan
, “
Atmospheric-pressure pulsed discharges and plasmas: Mechanism, characteristics and applications
,”
High Voltage
3
(
1
),
14
20
(
2018
).
10.
D.
Wang
and
T.
Namihira
, “
Nanosecond pulsed streamer discharges: II. Physics, discharge characterization and plasma processing
,”
Plasma Sources Sci. Technol.
29
,
023001
(
2020
).
11.
Z.
Zhao
and
J.
Li
, “
Repetitively pulsed gas discharges: Memory effect and discharge mode transition
,”
High Voltage
5
,
569
582
(
2020
).
12.
G. V.
Naidis
, “
Simulation of spark discharges in high-pressure air sustained by repetitive high-voltage nanosecond pulses
,”
J. Phys. D: Appl. Phys.
41
,
234017
(
2008
).
13.
Z.
Zhao
,
D.
Huang
,
Y.
Wang
,
J.
He
,
C.
Li
,
Y.
Wang
, and
J.
Li
, “
Volume and surface memory effects on evolution of streamer dynamics along gas or solid interface in high-pressure nitrogen under long-term repetitive nanosecond pulses
,”
Plasma Sources Sci. Technol.
29
,
015016
(
2020
).
14.
D. Z.
Pai
,
D. A.
Lacoste
, and
C. O.
Laux
, “
Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure
,”
J. Appl. Phys.
107
,
093303
(
2010
).
15.
X.
Lu
,
G. V.
Naidis
,
M.
Laroussi
, and
K.
Ostrikov
, “
Guided ionization waves: Theory and experiments
,”
Phys. Rep.
540
(
3
),
123
166
(
2014
).
16.
X.
Lu
and
K.
Ostrikov
, “
Guided ionization waves: The physics of repeatability
,”
Appl. Phys. Rev.
5
,
031102
(
2018
).
17.
Y.
Kawada
,
S.
Shamoto
, and
T.
Hosokawa
, “
Nanosecond-pulse breakdown of gas-insulated gaps
,”
J. Appl. Phys.
63
(
6
),
1877
1881
(
1988
).
18.
G.
Mesyats
and
Y.
Korolev
, “
High-pressure volume discharges in gas lasers
,”
Sov. Phys. Usp.
29
(
1
),
57
69
(
1986
).
19.
Y.
Korolev
and
G.
Mesyats
,
Physics of Pulsed Breakdown in Gases
(
URO Press
,
Yekaterinburg, Russia
,
1998
).
20.
A.
Komuro
,
R.
Ono
, and
T.
Oda
, “
Effects of pulse voltage rise rate on velocity, diameter and radical production of an atmospheric-pressure streamer discharge
,”
Plasma Sources Sci. Technol.
22
,
045002
(
2013
).
21.
V. F.
Tarasenko
, “
Runaway electrons in diffuse gas discharges
,”
Plasma Sources Sci. Technol.
29
,
034001
(
2018
).
22.
T.
Shao
,
C.
Zhang
,
Z.
Niu
,
P.
Yan
,
V. F.
Tarasenko
,
E. K.
Baksht
,
A. G.
Burahenko
, and
Y. V.
Shutko
, “
Diffuse discharge, runaway electron, and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes
,”
Appl. Phys. Lett.
98
,
021503
(
2011
).
23.
F.
Iza
,
J. L.
Walsh
, and
M. G.
Kong
, “
From submicrosecond- to nanosecond-pulsed atmospheric-pressure plasmas
,”
IEEE Trans. Plasma Sci.
37
(
7
),
1289
1296
(
2009
).
24.
K.
Nanbu
, “
Probability theory of electron–molecule, ion–molecule, molecule–molecule, and coulomb collisions for particle modeling of materials processing plasmas and gases
,”
IEEE Trans. Plasma Sci.
28
(
3
),
971
990
(
2000
).
25.
X.
Yuan
,
H.
Li
,
M.
Abbas
,
X.
Li
,
Z.
Wang
,
G.
Zhang
, and
A.
Sun
, “
A 3D numerical study of positive streamers interacting with localized plasma regions
,”
J. Phys. D: Appl. Phys.
53
,
425204
(
2020
).
26.
J.
Teunissen
and
U.
Ebert
, “
Afivo: A framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods
,”
Comput. Phys. Commun.
233
,
156
166
(
2018
).
27.
C.
Li
,
Y.
Wang
,
X.
Zheng
,
Z.
Zhao
, and
J.
Li
, “
Effects of surplus heat and space charges on dynamic evolution of nanosecond repetitively pulsed discharges
,”
Phys. Plasmas.
29
,
023509
(
2022
).
28.
Z.
Zhao
,
C.
Li
,
X.
Zheng
,
A.
Sun
, and
J.
Li
, “
Periodical discharge regime transitions under long-term repetitive nanosecond pulses
,”
Plasma Sources Sci. Technol.
31
,
045005
(
2022
).
29.
See www.lxcat.net for
Phelps database
, retrieved on 15 March
2021
.
30.
C.
Wormeester
,
S.
Pancheshnyi
,
A.
Luque
,
S.
Nijdam
, and
U.
Ebert
, “
Probing photo-ionization: Simulations of positive streamers in varying N2:O2-mixtures
,”
J. Phys. D: Appl. Phys.
43
,
505201
(
2010
).
31.
I. A.
Kossyi
,
A. Y.
Kostinsky
,
A. A.
Matveyev
, and
V. P.
Silakov
, “
Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures
,”
Plasma Sources Sci. Technol.
1
(
3
),
207
220
(
1992
).
32.
X.
Li
,
S.
Dijcks
,
S.
Nijdam
,
A.
Sun
,
U.
Ebert
, and
J.
Teunissen
, “
Comparing simulations and experiments of positive streamers in air: Steps toward model validation
,”
Plasma Sources Sci. Technol.
30
,
095002
(
2021
).
33.
C.
Li
,
X.
Zheng
,
Z.
Zhao
,
Y.
Wang
, and
J.
Li
, “
Two-dimensional global-particle simulation of streamer evolution process under continuous pulses in nitrogen at atmospheric pressure
,”
High Voltage Eng.
48
(
2
),
789
798
(
2022
).
34.
M.
Jiang
,
Y.
Li
,
H.
Wang
, and
C.
Liu
, “
3D PIC-MCC simulations of positive streamers in air gaps
,”
Phys. Plasmas
24
,
102112
(
2017
).
35.
A.
Sun
,
M. M.
Becker
, and
D.
Loffhagen
, “
PIC/MCC simulation of capacitively coupled discharges: Effect of particle management and integration
,”
Comput. Phys. Commun.
206
,
35
44
(
2016
).
36.
M.
Capitelli
,
C. M.
Ferreira
,
B. F.
Gordiets
, and
A. I.
Osipov
,
Plasma Kinetics in Atmospheric Gases
(
Springer
,
Berlin
,
2000
).
You do not currently have access to this content.