Cylindrical Langmuir probe measurements in a low-pressure DC argon discharge are used to obtain the spatial evolution of ion, cold and hot electron parameters across the cathodic pre-sheath. The cathodic pre-sheath is formed by a stainless steel plate allowed to float negatively with respect to the plasma. The velocity distribution function of the hot electron population in the pre-sheath is shown to be matched by a drifting Maxwellian that thermalizes across it. The source of the hot electron population is hypothesized to arise from secondary electron emission from the plate. A Bayesian estimation routine is proposed to compare and validate different Langmuir probe models as well as calculating the relative uncertainty between models. The results are analyzed using existing pre-sheath theory for which experimental evidence of the spatial influence of energetic electrons is lacking. The data are shown to follow Riemann's pre-sheath model that the ion-neutral mean free path λ i is proportional to the pre-sheath characteristic length l, and that the potential drop ϕ ( x ) with distance x from the sheath/pre-sheath boundary x0 follows ϕ ( x ) ∝ ( x 0 − x ) / l.

1.
K. U.
Riemann
, “
The Bohm criterion and sheath formation
,”
J. Phys. D
24
(
4
),
493
518
(
1991
).
2.
P.
Zhang
,
Á.
Valfells
,
L. K.
Ang
,
J. W.
Luginsland
, and
Y. Y.
Lau
, “
100 years of the physics of diodes
,”
Appl. Phys. Rev.
4
(
1
),
011304
(
2017
).
3.
H. D.
Hagstrum
, “
Auger ejection of electrons from tungsten by noble gas ions
,”
Phys. Rev.
96
(
2
),
325
335
(
1954
).
4.
S.
Langendorf
and
M.
Walker
, “
Effect of secondary electron emission on the plasma sheath
,”
Phys. Plasmas
22
(
3
),
033515
(
2015
).
5.
B. L.
Henke
,
J. A.
Smith
, and
D. T.
Attwood
, “
0.1–10-keV x-ray-induced electron emissions from solids–Models and secondary electron measurements
,”
J. Appl. Phys.
48
(
5
),
1852
1866
(
1977
).
6.
I. V.
Schweigert
,
S. J.
Langendorf
,
M. L. R.
Walker
, and
M.
Keidar
, “
Sheath structure transition controlled by secondary electron emission
,”
Plasma Sources Sci. Technol.
24
(
2
),
025012
(
2015
).
7.
Z.
Sternovsky
and
S.
Robertson
, “
Langmuir probe interpretation for plasmas with secondary electrons from the wall
,”
Phys. Plasmas
11
(
7
),
3610
3615
(
2004
).
8.
V.
Pigeon
,
N.
Claire
,
C.
Arnas
,
K.
Terasaka
, and
S.
Inagaki
, “
Plasma sheath material induced dependence due to secondary electron emission
,”
Phys. Plasmas
27
(
4
),
043505
(
2020
).
9.
D.
Bohm
, “
The characteristics of electrical discharges in magnetic fields
,” in
National Nuclear Energy Series. Manhattan Project Technical Section. Division I
,
1st ed.
(
McGraw-Hill
,
New York
,
1949
), Vol.
5
. Chap. 3.
10.
S. B.
Song
,
C. S.
Chang
, and
D.-I.
Choi
, “
Effect of two-temperature electron distribution on the Bohm sheath criterion
,”
Phys. Rev. E
55
(
1
),
1213
1216
(
1997
).
11.
K.-L.
Persson
, “
Inertia-controlled ambipolar diffusion
,”
Phys. Fluids
5
(
12
),
1625
(
1962
).
12.
K.-U.
Riemann
, “
The influence of collisions on the plasma sheath transition
,”
Phys. Plasmas
4
(
11
),
4158
4166
(
1997
).
13.
L.
Oksuz
and
N.
Hershkowitz
, “
First experimental measurements of the plasma potential throughout the presheath and sheath at a boundary in a weakly collisional plasma
,”
Phys. Rev. Lett.
89
(
14
),
145001
(
2002
).
14.
L.
Oksuz
and
N.
Hershkowitz
, “
Plasma, presheath, collisional sheath and collisionless sheath potential profiles in weakly ionized, weakly collisional plasma
,”
Plasma Sources Sci. Technol.
14
(
1
),
201
208
(
2005
).
15.
N.
Claire
,
G.
Bachet
,
U.
Stroth
, and
F.
Doveil
, “
Laser-induced-fluorescence observation of ion velocity distribution functions in a plasma sheath
,”
Phys. Plasmas
13
(
6
),
062103
(
2006
).
16.
N.
Claire
,
S.
Mazouffre
,
C.
Rebont
, and
F.
Doveil
, “
Examination of argon metastable atom velocity distribution function close to a conducting wall
,”
Phys. Plasmas
19
(
3
),
032108
(
2012
).
17.
N.
Ranson
,
V.
Pigeon
,
N.
Claire
, and
J.
Khachan
, “
Measurements and modeling of ion divergence from a gridded inertial electrostatic confinement device using laser induced fluorescence
,”
Phys. Plasmas
27
(
10
),
103501
(
2020
).
18.
M. J.
Goeckner
,
J.
Goree
, and
T. E.
Sheridan
, “
Measurements of ion velocity and density in the plasma sheath
,”
Phys. Fluids B
4
(
6
),
1663
1670
(
1992
).
19.
L.
Oksuz
,
M.
Atta Khedr
, and
N.
Hershkowitz
, “
Laser induced fluorescence of argon ions in a plasma presheath
,”
Phys. Plasmas
8
(
5
),
1729
1733
(
2001
).
20.
M. J.
Goeckner
,
J.
Goree
, and
T. E.
Sheridan
, “
Laser–induced fluorescence characterization of a multidipole filament plasma
,”
Phys. Fluids B
3
(
10
),
2913
2921
(
1991
).
21.
D. N.
Hill
,
S.
Fornaca
, and
M. G.
Wickham
, “
Single frequency scanning laser as a plasma diagnostic
,”
Rev. Sci. Instrum.
54
(
3
),
309
314
(
1983
).
22.
G. D.
Severn
,
D. A.
Edrich
, and
R.
Mcwilliams
, “
Argon ion laser-induced fluorescence with diode lasers
,”
Rev. Sci. Instrum.
69
(
1
),
10
15
(
1998
).
23.
Á.
Yanguas-Gil
,
J.
Cotrino
, and
L. L.
Alves
, “
An update of argon inelastic cross sections for plasma discharges
,”
J. Phys. D
38
(
10
),
1588
1598
(
2005
).
24.
A. V.
Phelps
, “
Cross sections and swarm coefficients for nitrogen ions and neutrals in N2 and argon ions and neutrals in Ar for energies from 0.1 eV to 10 keV
,”
J. Phys. Chem. Ref. Data
20
(
3
),
557
573
(
1991
).
25.
K. F.
Schoenberg
and
W. B.
Kunkel
, “
General plasma characteristics of a Berkeley multifilament ion source
,”
J. Appl. Phys.
50
(
7
),
4685
4691
(
1979
).
26.
L. S.
Pilling
and
D. A.
Carnegie
, “
Validating experimental and theoretical Langmuir probe analyses
,”
Plasma Sources Sci. Technol.
16
(
3
),
570
580
(
2007
).
27.
N.
Hershkowitz
,
J. R.
Dekock
,
P.
Coakley
, and
S. L.
Cartier
, “
Surface trapping of primary electrons by multidipole magnetic fields
,”
Rev. Sci. Instrum.
51
(
1
),
64
69
(
1980
).
28.
E.
Ahedo
, “
Presheath/sheath model with secondary electron emission from two parallel walls
,”
Phys. Plasmas
9
(
10
),
4340
4347
(
2002
).
29.
I.
Langmuir
, “
Scattering of electrons in ionized gases
,”
Phys. Rev.
26
(
5
),
585
613
(
1925
).
30.
S.
Knappmiller
,
S.
Robertson
, and
Z.
Sternovsky
, “
Method to find the electron distribution function from cylindrical probe data
,”
Phys. Rev. E
73
(
6
),
066402
(
2006
).
31.
H. M.
Mott-Smith
and
I.
Langmuir
, “
The theory of collectors in gaseous discharges
,”
Phys. Rev.
28
(
4
),
727
763
(
1926
).
32.
P. M.
Chung
,
L.
Talbot
, and
K. J.
Touryan
, in
Electric Probes in Stationary and Flowing Plasmas: Theory and Application
, Applied Physics and Engineering, An International Series Vol.
11
(
Springer Berlin/Heidelberg
,
Berlin, Heidelberg
,
1975
).
33.
B. E.
Cherrington
, “
The use of electrostatic probes for plasma diagnostics—A review
,”
Plasma Chem. Plasma Process.
2
(
2
),
113
140
(
1982
).
34.
M.
Nachman
and
P. C.
Thanh
, “
Thickness of the ion sheath around a cylindrical electrode in a plasma
,”
IEEE Trans. Plasma Sci.
19
(
2
),
423
427
(
1991
).
35.
F. F.
Chen
, “
Langmuir probes in RF plasma: Surprising validity of OML theory
,”
Plasma Sources Sci. Technol.
18
(
3
),
035012
(
2009
).
36.
J. F.
Waymouth
, “
Perturbation of a plasma by a probe
,”
Phys. Fluids
7
(
11
),
1843
(
1964
).
37.
J. G.
Laframboise
, “
Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless, Maxwellian Plasma at Rest
,”
Report No. 100
(
University of Toronto Institute for Aerospace Studies
,
1966
).
38.
T. E.
Sheridan
and
J.
Goree
, “
Langmuir-probe characteristic in the presence of drifting electrons
,”
Phys. Rev. E
50
(
4
),
2991
2996
(
1994
).
39.
F. F.
Chen
, “
Electric probes
,” in
Plasma Diagnostic Techniques
,
1st ed.
, edited by
R. H.
Huddlestone
and
S. L.
Leonard
(
Academic Press
,
New York
,
1965
), Vol.
1
, Chap. 4, pp.
113
199
.
40.
S. D.
Baalrud
,
J. D.
Callen
, and
C. C.
Hegna
, “
Instability-enhanced collisional effects and Langmuir's paradox
,”
Phys. Rev. Lett.
102
(
24
),
245005
(
2009
).
41.
Y. P.
Raĭzer
,
Gas Discharge Physics
(
Springer-Verlag
,
Berlin
,
1991
), Chap. 6.
42.
X.
Hou
,
Y.
Fu
,
H.
Wang
,
X.
Zou
,
H.
Luo
, and
X.
Wang
, “
Determination of the cathode layer thickness in the normal glow discharge
,”
Phys. Plasmas
24
(
8
),
083506
(
2017
).
43.
M. J.
Druyvesteyn
, “
Der niedervoltbogen
,”
Eur. Phys. J. A
64
(
11–12
),
781
798
(
1930
).
44.
L.
Schott
, “
Electrical probes
,” in
Plasma Diagnostics
,
1st ed.
, edited by
W.
Lochte-Holtgreven
(
North-Holland Publishing Company
,
Amsterdam
,
1968
), Vol.
1
, Chap. 11, pp.
668
725
.
45.
N.
Hershkowitz
, “
How Langmuir probes work
,” in
Plasma Diagnostics
,
1st ed.
, edited by
O.
Auciello
and
D. L.
Flamm
(
Academic Press
,
1989
), Vol.
1
, Chap. 3, pp.
113
184
.
46.
B. N.
Chapman
,
Glow Discharge Processes; Sputtering and Plasma Etching
,
1st ed.
(
John Wiley & Sons, Inc.
,
1980
), Chap. 4, pp.
84
90
.
47.
A. V.
Phelps
and
Z. L.
Petrovic
, “
Cold-cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons
,”
Plasma Sources Sci. Technol.
8
(
3
),
R21
R44
(
1999
).
48.
N.
Claire
,
M.
Dindelegan
,
G.
Bachet
, and
F.
Skiff
, “
Nonlinear optical tagging diagnostic for the measurement of Fokker-Planck diffusion and electric fields
,”
Rev. Sci. Instrum.
72
(
12
),
4372
4376
(
2001
).
49.
E. W.
McDaniel
,
Collision Phenomena in Ionized Gases
,
1st ed.
(
John Wiley and Sons
,
1964
), Chap. 5, p.
189
.
50.
M. B.
Hopkins
and
W. G.
Graham
, “
Langmuir probe technique for plasma parameter measurement in a medium density discharge
,”
Rev. Sci. Instrum.
57
(
9
),
2210
2217
(
1986
).
51.
C.
Steinbruchel
, “
A new method for analyzing Langmuir probe data and the determination of ion densities and etch yields in an etching plasma
,”
J. Vac. Sci. Technol. A
8
(
3
),
1663
1667
(
1990
).
52.
G. G.
Raju
, “
Electron-atom collision cross sections in argon: An analysis and comments
,”
IEEE Trans. Dielectr. Electr. Insul.
11
(
4
),
649
673
(
2004
).
53.
M.
Carr
, “
Electrostatic potential measurements and point cusp theories applied to a low beta Polywell fusion device
,” Ph.D. thesis (
The University of Sydney
,
2013
).
54.
L. G.
Guseva
, “
On discharge striking in polyatomic gases at pd < (pd)min
,” in
Investigations into Electrical Discharges in Gases
, edited by
B. N.
Klyarfel'd
(
Pergamon Press
,
Oxford
,
1964
).
55.
A. K.
Brewer
and
J. W.
Westhaver
, “
The cathode region in the glow discharge
,”
J. Appl. Phys.
8
(
11
),
779
782
(
1937
).
56.
J.
Bretagne
,
J.
Godart
, and
V.
Puech
, “
Low-energy electron distribution in an electron-beam-generated argon plasma
,”
J. Phys. D
15
(
11
),
2205
2225
(
1982
).
57.
J.
Bretagne
,
G.
Callede
,
M.
Legentil
, and
V.
Puech
, “
Relativistic electron-beam-produced plasmas. I. Collision cross sections and loss function in argon
,”
J. Phys. D
19
(
5
),
761
777
(
1986
).
58.
J.
Vlcek
, “
A collisional-radiative model applicable to argon discharges over a wide range of conditions. 1. Formulation and basic data
,”
J. Phys. D
22
(
5
),
623
631
(
1989
).
59.
D.
Rapp
and
P.
Englande
, “
Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionisation
,”
J. Chem. Phys.
43
(
5
),
1464
(
1965
).
60.
C. S.
Yip
,
N.
Hershkowitz
, and
G.
Severn
, “
Verifying effects of instability enhanced ion–ion coulomb collisions on ion velocity distribution functions near the sheath edge in low temperature plasmas
,”
Plasma Sources Sci. Technol.
24
(
1
),
015018
(
2014
).
61.
D.
Coulette
and
G.
Manfredi
, “
Collisionless ‘thermalization’ in the sheath of an argon discharge
,”
Phys. Plasmas
22
(
4
),
043505
(
2015
).
62.
J. A.
Meyer
,
G.-H.
Kim
,
M. J.
Goeckner
, and
N.
Hershkowitz
, “
Measurements of the presheath in an electron cyclotron resonance etching device
,”
Plasma Sources Sci. Technol.
1
(
3
),
147
150
(
1992
).
63.
R.
Hegerberg
,
M. T.
Elford
, and
H. R.
Skullerud
, “
The cross section for symmetric charge exchange of Ne+ in Ne and Ar+ in Ar at low energies
,”
J. Phys. B
15
(
5
),
797
811
(
1982
).
64.
D.
Wobschall
,
J. R.
Graham
, and
D. P.
Malone
, “
Ion cyclotron resonance and determination of collision cross sections
,”
Phys. Rev.
131
(
4
),
1565
(
1963
).
65.
E. W.
McDaniel
,
Collision Phenomena in Ionized Gases
,
1st ed.
(
John Wiley and Sons
,
1964
), Chap. 6, p.
252
.
You do not currently have access to this content.