In recent years, the interaction of electromagnetic waves (EM) with plasma sources under argon and helium discharges has been extensively studied due to its potential applications in plasma stealth. However, nitrogen, as a more economical discharge gas, has been ignored in terms of its absorption of EM waves and stealth effect. In this work, a numerical calculation model combining two-dimensional capacitively coupled plasma (CCP) fluid model and EM wave model was developed to investigate the plasma uniformity degree and broadband microwave absorption effects in helium and nitrogen CCP. It is concluded that the two-dimensional model in this paper has more accurate and reasonable through comparison with the one-dimensional and experimental results in helium CCP. Nitrogen CCP shows better broadband absorption effects than that of helium, and helium plasma has better uniformity than nitrogen under the same discharge parameters. But the uniformity degree of nitrogen plasma is not much different from that of helium under the same electron density, which means that nitrogen can significantly improve its broadband wave absorption properties to some extent without loss of uniformity degree. Based on the above conclusions, the absorption characteristics of nitrogen CCP under different radio frequency (RF) power and pressure are analyzed. The attenuation effect of nitrogen CCP increases with the increasing RF power, and it is interesting that the influence of pressure on the attenuation of EM waves is not monotonically increasing, and the related mechanism is discussed. Finally, discussion of skin depth under different RF power and pressure validates the above conclusions. The absorption band of nitrogen CCP under the best parameters in this work can reach the X-band, which shows great application potential in plasma stealth.

1.
M.
Bachynski
,
T.
Johnston
, and
I.
Shkarofsky
, “
Electromagnetic properties of high-temperature air
,”
IEEE Trans. Antennas Propag.
7
(
5
),
337
339
(
1959
).
2.
S. B.
Sun
,
S.
Liu
, and
S. Y.
Zhong
, “
Analysis of terahertz wave penetration capacity to 2D conductive cylinder coated with steady-state parabolic distribution plasma media
,”
Results Phys.
27
(
10
),
104516
(
2021
).
3.
J. H.
Zhang
,
Y. M.
Liu
, and
X. P.
Li
, “
The study of spatial dispersion effect on electromagnetic waves propagation in the warm non-uniform re-entry plasma sheath
,”
Phys. Plasmas
27
(
2
),
022104
(
2020
).
4.
W. C.
Ouyang
and
Y. M.
Liu
, “
Impact of ionization rate on the transmission of electromagnetic wave in realistic plasma
,”
Phys. Plasmas
27
(
3
),
033507
(
2020
).
5.
Q. C.
Zhang
,
Z. Y.
Tian
,
W. Y.
Tang
,
N.
Tang
,
H.
Zhao
, and
H.
Lin
, “
Study of attenuation characteristics of electromagnetic waves in multilayer plasma slabs
,”
J. Appl. Phys.
125
(
9
),
094902
(
2019
).
6.
S. S. M.
Chung
and
Y. C.
Chuang
, “
Simulation on change of generic satellite radar cross section via artificially created plasma sprays
,”
Plasma Sources Sci. Technol.
25
(
3
),
035004
(
2016
).
7.
J.
Xu
,
B.
Bai
,
C.
Dong
,
Y.
Zhu
,
Y. Y.
Dong
, and
G.
Zhao
, “
A novel plasma jamming technology based on the resonance absorption effect
,”
IEEE Antennas Wireless Propag. Lett.
16
,
1056
1059
(
2016
).
8.
W.
Chen
,
L.
Guo
,
J.
Li
, and
S.
Liu
, “
Research on the FDTD method of electromagnetic wave scattering characteristics in time-varying and spatially nonuniform plasma sheath
,”
IEEE Trans. Plasma Sci.
44
(
12
),
3235
3242
(
2016
).
9.
H. L.
Wei
,
Y. M.
Liu
,
L.
Shi
,
B.
Yao
, and
X. P.
Li
, “
A 3-D total-field/scattered-field plane-wave source for the FDTD analysis of reentry plasma sheath
,”
IEEE Trans. Antennas Propag.
68
(
8
),
6214
6225
(
2020
).
10.
Q. C.
Zhang
,
H.
Zhao
,
H.
Lin
, and
Z. Y.
Tian
, “
Attenuating broadband electromagnetic waves in dielectric-barrier discharge plasmas
,”
IEEE Trans. Plasma Sci.
48
(
1
),
119
126
(
2020
).
11.
X. L.
Wei
,
H. J.
Xu
,
M.
Lin
, and
H. M.
Song
, “
Comparison study of electromagnetic wave propagation in high and low pressure Ar inductively coupled plasma
,”
Vacuum
127
,
65
72
(
2016
).
12.
M.
Yang
,
X. P.
Li
,
K.
Xie
,
Y. M.
Liu
, and
D. L.
Liu
, “
A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma
,”
Phys. Plasmas
20
(
1
),
012101
(
2013
).
13.
Y.
Liu
,
Z. C.
Yuan
,
J. C.
Wang
,
J. K.
Zhang
,
D. X.
Ma
, and
J. M.
Shi
, “
Simulation of EM wave propagation along a femtosecond laser plasma filament
,”
Results Phys.
14
(
10
),
102359
(
2019
).
14.
R. L.
Gao
,
C. X.
Yuan
,
H.
Li
,
J. S.
Jia
,
Z. X.
Zhou
,
Y.
Wang
,
X. O.
Wang
, and
J.
Wu
, “
Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma
,”
Rev. Sci. Instrum.
87
(
8
),
083506
(
2016
).
15.
R. L.
Gao
,
C. X.
Yuan
,
J. S.
Jia
,
Z. X.
Zhou
,
Y.
Wang
,
X. O.
Wang
,
H.
Li
, and
J.
Wu
, “
Broadband microwave measurement of electron temperature of a large coaxial gridded hollow cathode helium plasma
,”
Phys. Plasmas
23
(
10
),
103304
(
2016
).
16.
Y. C.
Zhang
,
X.
He
,
J. P.
Chen
,
L.
Chen
,
H. C.
Zhang
,
X. W.
Ni
,
J.
Lu
, and
Z. H.
Shen
, “
Broadband microwave absorption and standing wave effect in helium capacitively coupled plasma
,”
Phys. Plasmas
24
(
8
),
083511
(
2017
).
17.
W. C.
Ouyang
,
Q.
Liu
,
T.
Jin
, and
Z. W.
Wu
, “
Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
,”
Chin. Phys. B
30
,
095203
(
2021
).
18.
X. L.
Wei
,
H. J.
Xu
,
J. H.
Li
,
M.
Lin
, and
C.
Su
, “
Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma
,”
J. Appl. Phys.
117
(
20
),
203301
(
2015
).
19.
D.
Mansuroglu
, “
Capacitively coupled radio frequency nitrogen plasma generated at two different exciting frequencies of 13.56 MHz and 40 MHz analyzed using Langmuir probe along with optical emission spectroscopy
,”
AIP Adv.
9
(
5
),
055205
(
2019
).
20.
C.
Lazarou
,
D.
Koukounis
,
A. S.
Chiper
,
C.
Costin
,
I.
Topala
, and
G. E.
Georghiou
, “
Numerical modeling of the effect of the level of nitrogen impurities in a helium parallel plate dielectric barrier discharge
,”
Plasma Source Sci. Technol.
24
(
3
),
035012
(
2015
).
21.
G. J. M.
Hagelaar
and
L. C.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. Technol.
14
(
4
),
722
733
(
2005
).
22.
M.
Surendra
, “
Radiofrequency discharge benchmark model comparison
,”
Plasma Sources Sci. Technol.
4
(
1
),
56
73
(
1995
).
23.
O. B.
Angel
and
B.
Cornelia
, “
Fast and reliable simulations of argon inductively coupled plasma using COMSOL
,”
Vacuum
116
,
65
72
(
2015
).
24.
X. M.
Zhu
and
Y. K.
Pu
, “
Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas
,”
Plasma Sources Sci. Technol.
17
(
2
),
024002
(
2008
).
25.
Phelps database, see www.lxcat.net for “
N2 Scattering Cross Sections
” (accessed December 16, 2019).
26.
Y. S.
Liang
,
Y. X.
Liu
,
Y. R.
Zhang
, and
Y. N.
Wang
, “
Fluid simulation and experimental validation of plasma radial uniformity in 60 MHz capacitively coupled nitrogen discharges
,”
J. Appl. Phys.
117
(
8
),
083301
(
2015
).
27.
M. M.
Pejović
,
E. N.
Živanović
, and
M. M.
Pejović
, “
Kinetics of ions and neutral active states in the afterglow and their influence on the memory effect in nitrogen at low pressures
,”
J. Phys. D
37
(
8
),
200
(
2004
).
28.
E.
Tatarova
,
F. M.
Dias
,
C. M.
Ferreira
,
V.
Guerra
,
J.
Loureiro
,
E.
Stoykova
,
I.
Ghanashev
, and
I.
Zhelyazkov
, “
Self-consistent kinetic model of a surface-wave-sustained discharge in nitrogen
,”
J. Phys. D
30
(
19
),
2663
(
1997
).
29.
P. C.
Cosby
, “
Electron-impact dissociation of nitrogen
,”
J. Chem. Phys.
98
(
12
),
9544
9553
(
1993
).
30.
J.
Levaton
,
J.
Amorim
,
A. R.
Souza
,
D.
Franco
, and
A.
Ricard
, “
Kinetics of atoms, metastable, radiative and ionic species in the nitrogen pink afterglow
,”
J. Phys. D
35
(
7
),
689
(
2002
).
31.
F.
Lei
,
X. P.
Li
,
D. L.
Liu
,
Y. M.
Liu
, and
S.
Zhang
, “
Simulation study of an inductively coupled plasma discharge with different copper coil designs and gas compositions
,”
AIP Adv.
9
(
8
),
085228
(
2019
).
32.
E. G.
Thorsteinsson
and
J. T.
Gudmundsson
, “
A global (volume averaged) model of a nitrogen discharge: I. Steady state
,”
Plasma Sources Sci. Technol.
18
(
4
),
045001
(
2009
).
33.
A.
Bogaerts
, “
Hybrid Monte Carlo—Fluid model for studying the effects of nitrogen addition to argon glow discharges
,”
Spectrochim. Acta, Part B
64
(
2
),
126
140
(
2009
).
34.
V.
Guerra
and
J.
Loureiro
, “
Self-consistent electron and heavy-particle kinetics in a low pressure N2-O2 glow discharge
,”
Plasma Sources Sci. Technol.
6
(
3
),
373
(
1997
).
35.
W. C.
Ouyang
,
Q.
Liu
,
Z.
Zhang
,
T.
Jin
, and
Z. W.
Wu
, “
Effect of non-ionizing reaction rate (assumed to be controllable) on the plasma generation mechanism and communication around RAMC vehicle during atmospheric reentry
,”
Sci. Rep.
11
,
20046
(
2021
).
36.
C. W.
Zhao
,
X. P.
Li
,
Y. M.
Liu
,
D. L.
Liu
,
C.
Sun
,
G. L.
Ma
,
L. S.
Tian
, and
W. M.
Bao
, “
Research on plasma electron density distribution based on microwave diffraction
,”
Plasma Sources Sci. Technol.
31
(
1
),
015007
(
2022
).
37.
W. C.
Ouyang
,
C. B.
Ding
,
Q.
Liu
,
S. Z.
Gao
,
W. F.
Deng
, and
Z. W.
Wu
, “
Fluid simulation of the plasma uniformity in new multidirectional source capacitively coupled plasma
,”
AIP Adv.
11
,
075121
(
2021
).
38.
J. A.
Bittencourt
,
Fundamentals of Plasma Physics
,
3rd ed
. (
Springer Verlag
,
New York
,
2004
).
39.
D.
Akbar
, “
Investigation of single and dual RF capacitively coupled nitrogen plasma discharges using optical emission spectroscopy
,”
IEEE Trans. Plasma Sci.
42
(
8
),
2058
2064
(
2014
).
40.
Z. H.
Sun
,
C.
Dong
,
Y. C.
Zhang
,
X.
He
,
X. W.
Ni
, and
X. S.
Luo
, “
Absorption of 10 GHz electromagnetic waves by femtosecond filaments array
,”
High Power Laser Part. Beams
30
(
5
),
053201
(
2018
).
You do not currently have access to this content.