L-shell electron-impact ionization (EII) cross sections for highly charged tungsten ions were measured at incident electron energies of 29.10 and 38.92 keV using the Shanghai-EBIT. Resolved x-rays from radiative recombination (RR) processes were recorded with a high-purity Ge detector in a static electron energy scanning mode. Absolute EII cross sections were obtained by normalizing to the theoretical RR cross sections. The experimental results were compared with the calculated results using the relativistic distorted-wave method implemented in the flexible atomic code and the relativistic Lotz semi-empirical equation. The measurements showed general agreement with the calculated results by two theoretical methods for Li- to N-like W ions. The experimental uncertainties are not sufficiently small to discern the two theoretical results. Furthermore, the influence of Breit interaction on the EII cross sections of open L-shell tungsten ions was studied, and the effect is small but non-negligible. The measured EII cross sections of open L-shell tungsten ions would contribute to fusion plasma studies.

1.
T.
Hirai
,
S.
Carpentier-Chouchana
,
F.
Escourbiac
,
S.
Panayotis
,
A.
Durocher
,
L.
Ferrand
,
M.
Garcia-Martinez
,
J.
Gunn
,
V.
Komarov
,
M.
Merola
,
R.
Pitts
, and
G.
De Temmerman
, “
Design optimization of the ITER tungsten divertor vertical targets
,”
Fusion Eng. Des.
127
,
66
72
(
2018
).
2.
X.
Litaudon
,
S.
Abduallev
,
M.
Abhangi
,
P.
Abreu
,
M.
Afzal
,
K.
Aggarwal
,
T.
Ahlgren
,
J.
Ahn
,
L.
Aho-Mantila
,
N.
Aiba
et al, “
Overview of the JET results in support to ITER
,”
Nucl. Fusion
57
,
102001
(
2017
).
3.
I.
Murakami
,
D.
Kato
,
T.
Oishi
,
M.
Goto
,
Y.
Kawamoto
,
C.
Suzuki
,
H.
Sakaue
, and
S.
Morita
, “
Progress of tungsten spectral modeling for ITER edge plasma diagnostics based on tungsten spectroscopy in LHD
,”
Nucl. Mater. Energy
26
,
100923
(
2021
).
4.
T.
Pütterich
,
R.
Neu
,
R.
Dux
,
A. D.
Whiteford
,
M. G.
O'Mullane
, and
the ASDEX Upgrade Team
, “
Modelling of measured tungsten spectra from ASDEX upgrade and predictions for ITER
,”
Plasma Phys. Controlled Fusion
50
,
085016
(
2008
).
5.
J.
Clementson
,
T.
Lennartsson
, and
P.
Beiersdorfer
, “
Extreme ultraviolet spectra of few-times ionized tungsten for divertor plasma diagnostics
,”
Atoms
3
,
407
421
(
2015
).
6.
V.
Philipps
, “
Plasma-wall interaction, a key issue on the way to a steady state burning fusion device
,”
Phys. Scr. T
123
,
24
32
(
2006
).
7.
T.
Lennartsson
,
J.
Clementson
, and
P.
Beiersdorfer
, “
Experimental wavelengths for intrashell transitions in tungsten ions with partially filled 3p and 3d subshells
,”
Phys. Rev. A
87
,
062505
(
2013
).
8.
P.
Beiersdorfer
,
J.
Clementson
, and
U. I.
Safronova
, “
Tungsten data for current and future uses in fusion and plasma science
,”
Atoms
3
,
260
272
(
2015
).
9.
J.
Rzadkiewicz
,
Y.
Yang
,
K.
Kozioł
,
M. G.
O'Mullane
,
A.
Patel
,
J.
Xiao
,
K.
Yao
,
Y.
Shen
,
D.
Lu
,
R.
Hutton
, and
Y.
Zou
, and
JET Contributors,
High-resolution tungsten spectroscopy relevant to the diagnostic of high-temperature tokamak plasmas
,”
Phys. Rev. A
97
,
052501
(
2018
).
10.
M. J.
May
,
S. B.
Hansen
,
J.
Scofield
,
M.
Schneider
,
K.
Wong
, and
P.
Beiersdorfer
, “
Gold charge state distributions in highly ionized, low-density beam plasmas
,”
Phys. Rev. E
84
,
046402
(
2011
).
11.
K.
Wong
,
M.
May
,
P.
Beiersdorfer
,
K.
Fournier
,
B.
Wilson
,
G.
Brown
,
P.
Springer
,
P.
Neill
, and
C.
Harris
, “
Determination of the charge state distribution of a highly ionized coronal Au plasma
,”
Phys. Rev. Lett.
90
,
235001
(
2003
).
12.
J. E.
Rice
,
J. L.
Terry
,
K. B.
Fournier
,
M. A.
Graf
,
M.
Finkenthal
,
M. J.
May
,
E. S.
Marmar
,
W. H.
Goldstein
, and
A. E.
Hubbard
, “
X-ray and VUV observations of Mo23+-Mo33+brightness profiles from alcator C-mod plasmas
,”
J. Phys. B: At. Mol. Opt. Phys.
29
,
2191
(
1996
).
13.
S. D.
Loch
,
J. A.
Ludlow
,
M. S.
Pindzola
,
A. D.
Whiteford
, and
D. C.
Griffin
, “
Electron-impact ionization of atomic ions in the W isonuclear sequence
,”
Phys. Rev. A
72
,
052716
(
2005
).
14.
M. S.
Pindzola
and
D. C.
Griffin
, “
Electron-impact ionization of the tungsten atom
,”
Phys. Rev. A
46
,
2486
2488
(
1992
).
15.
M. S.
Pindzola
and
D. C.
Griffin
, “
Electron-impact ionization of tungsten ions in the configuration-average distorted-wave approximation
,”
Phys. Rev. A
56
,
1654
1657
(
1997
).
16.
Z.
Altun
,
A.
Yumak
,
U.
Golcek
,
S. D.
Loch
,
M. S.
Pindzola
, and
D. C.
Griffin
, “
Electron-impact ionization of atomic ions in the Na isoelectronic sequence
,”
Phys. Scr.
78
,
025304
(
2008
).
17.
C. P.
Ballance
,
S. D.
Loch
,
M. S.
Pindzola
, and
D. C.
Griffin
, “
Electron-impact excitation and ionization of W3+ for the determination of tungsten influx in a fusion plasma
,”
J. Phys. B: At. Mol. Opt. Phys.
46
,
055202
(
2013
).
18.
D.-H.
Zhang
and
D.-H.
Kwon
, “
Theoretical electron-impact ionization of W17+ forming W 18 +
,”
J. Phys. B: At. Mol. Opt. Phys.
47
,
075202
(
2014
).
19.
A.
Kynienė
,
S.
Pakalka
,
Š.
Masys
, and
V.
Jonauskas
, “
Electron-impact ionization of W25+
,”
J. Phys. B: At. Mol. Opt. Phys.
49
,
185001
(
2016
).
20.
M. S.
Pindzola
and
S. D.
Loch
, “
Electron-impact ionization of W27+
,”
Phys. Rev. A
93
,
062709
(
2016
).
21.
D.
Zhang
,
L.
Xie
,
J.
Jiang
,
Z.
Wu
,
C.
Dong
,
Y.
Shi
, and
Y.
Qu
, “
Electron-impact single ionizaiton for W4+ and W 5 +
,”
Chin. Phys. B
27
,
053402
(
2018
).
22.
M. S.
Pindzol
and
S. D.
Loch
, “
Electron-impact single and double ionization of W+
,”
Eur. Phys. J. D
73
,
78
(
2019
).
23.
V.
Jonauskas
, “
Electron-impact ionization of W5+
,”
Phys. Rev. A
100
,
062701
(
2019
).
24.
F.
Jin
,
A.
Borovik
, Jr.
,
B.
Ebinger
, and
S.
Schippers
, “
Hybrid subconfiguration-average and level-to-level distorted-wave treatment of electron-impact single ionisation of W15+ and W 16 +
,”
J. Phys. B: At. Mol. Opt. Phys.
53
,
175201
(
2020
).
25.
G.
Purohit
,
D.
Kato
,
I.
Murakami
,
K. C.
Dhakar
,
S.
Gupta
, and
P.
Sinha
, “
Electron impact single ionization cross sections of W+
,”
Eur. Phys. J. D
75
,
219
(
2021
).
26.
R.
Bao
,
J.
Wei
,
B.
Li
, and
X.
Chen
, “
Electron-impact ionization of the tungsten ions: W38+ W 45 +
,”
Atoms
10
,
92
(
2022
).
27.
R. G.
Montague
and
M. F. A.
Harrison
, “
A measurement of the cross section for electron impact ionisation of singly charged tungsten ions
,”
J. Phys. B: At. Mol. Opt. Phys.
17
,
2707
2711
(
1984
).
28.
M.
Stenke
,
K.
Aichele
,
D.
Harthiramani
,
G.
Hofmann
,
M.
Steidl
,
R.
Volpel
, and
E.
Salzborn
, “
Electron-impact single-ionization of singly and multiply charged tungsten ions
,”
J. Phys. B: At. Mol. Opt. Phys.
28
,
2711
2721
(
1995
).
29.
J.
Rausch
,
A.
Becker
,
K.
Spruck
,
J.
Hellhund
,
A.
Borovik
, Jr.
,
K.
Huber
,
S.
Schippers
, and
A.
Müller
, “
Electron-impact single and double ionization of W17+
,”
J. Phys. B: At. Mol. Opt. Phys.
44
,
165202
(
2011
).
30.
A.
Borovik
,
B.
Ebinger
,
D.
Schury
,
S.
Schippers
, and
A.
Müller
, “
Electron-impact single ionization of W19+ ions
,”
Phys. Rev. A
93
,
012708
(
2016
).
31.
D.
Schury
,
A.
Borovik
, Jr.
,
B.
Ebinger
,
F.
Jin
,
K.
Spruck
,
A.
Müller
, and
S.
Schippers
, “
Electron-impact single ionisation of Wq+ ions experiment and theory
,”
J. Phys. B: At. Mol. Opt. Phys.
53
,
015201
(
2019
).
32.
R. E.
Marrs
,
S. R.
Elliott
, and
D. A.
Knapp
, “
Production and trapping of hydrogenlike and bare uranium ions in an electron beam ion trap
,”
Phys. Rev. Lett.
72
,
4082
4085
(
1994
).
33.
R. E.
Marrs
,
S. R.
Elliott
, and
J. H.
Scofield
, “
Measurement of electron-impact ionization cross sections for hydrogenlike high-Z ions
,”
Phys. Rev. A
56
,
1338
1345
(
1997
).
34.
T.
Stöhlker
,
A.
Krämer
,
S. R.
Elliott
,
R. E.
Marrs
, and
J. H.
Scofield
, “
Measurement of L-shell electron-impact ionization cross sections for highly charged uranium ions
,”
Phys. Rev. A
56
,
2819
2824
(
1997
).
35.
B.
O'Rourke
,
F. J.
Currell
,
H.
Kuramoto
,
Y. M.
Li
,
S.
Ohtani
,
X. M.
Tong
, and
H.
Watanabe
, “
Electron-impact ionization of hydrogen-like iron ions
,”
J. Phys. B: At. Mol. Opt. Phys.
34
,
4003
4013
(
2001
).
36.
H.
Watanabe
,
F. J.
Currell
,
H.
Kuramoto
,
S.
Ohtani
,
B.
O'Rourke
, and
X. M.
Tong
, “
Electron impact ionization of hydrogen-like molybdenum ions
,”
J. Phys. B: At. Mol. Opt. Phys.
35
,
5095
5103
(
2002
).
37.
M.
Guerra
,
P.
Amaro
,
J.
Machado
, and
J. P.
Santos
, “
Single differential electron impact ionization cross sections in the binary-encounter-Bethe approximation for the low binding energy regime
,”
J. Phys. B: At. Mol. Opt. Phys.
48
,
185202
(
2015
).
38.
D.
Vogel
,
P.
Beiersdorfer
,
K.
Wong
,
R.
Zasadzinski
, and
M. F.
Gu
, “
Measurements of electron impact K-shell ionization cross sections of Cr21+ ions
,”
Can. J. Phys.
99
,
806
813
(
2021
).
39.
J.
Zeng
,
C.
Ye
,
P.
Liu
,
C.
Gao
,
Y.
Li
, and
J.
Yuan
, “
The strong enhancement of electron-impact ionization processes in dense plasma by transient spatial localization
,”
Int. J. Mol. Sci.
23
,
6033
(
2022
).
40.
M. S.
Pindzola
,
D. L.
Moores
, and
D. C.
Griffin
, “
Electron-impact ionization of highly charged ions in lowest-order QED theory
,”
Phys. Rev. A
40
,
4941
4946
(
1989
).
41.
C. J.
Fontes
,
D. H.
Sampson
, and
H. L.
Zhang
, “
Relativistic calculations of cross sections for ionization of U90+ and U91+ions by electron impact
,”
Phys. Rev. A
51
,
R12
R13
(
1995
).
42.
D. L.
Moores
and
K. J.
Reed
, “
Effect of the Mo/ller interaction on electron-impact ionization of high-Z hydrogenlike ions
,”
Phys. Rev. A
51
,
R9
R11
(
1995
).
43.
D. L.
Moores
and
K. J.
Reed
, “
Electron collisions with very highly-charged ions-relativistic calculations
,”
Nucl. Instrum. Methods Phys. Res. B
98
,
122
124
(
1995
).
44.
C. J.
Fontes
,
D. H.
Sampson
, and
H. L.
Zhang
, “
Fully relativistic calculations of and fits to 1s ionization cross sections
,”
Phys. Rev. A
59
,
1329
1335
(
1999
).
45.
M. A.
Uddin
,
A. K. F.
Haque
,
A. K.
Basak
, and
B. C.
Saha
, “
Calculations of electron-impact single-ionization cross sections of helium isoelectronic systems
,”
Phys. Rev. A
70
,
032706
(
2004
).
46.
X. H.
Shi
,
C. Y.
Chen
,
Y.
Zhao
, and
Y. S.
Wang
, “
Relativistic calculations of electron-impact ionization for highly charged hydrogen-like ions
,”
J. Quant. Spectrosc. Radiat. Transfer
91
,
161
171
(
2005
).
47.
M. A.
Uddin
,
A. K. F.
Haque
,
A. K.
Basak
,
K. R.
Karim
, and
B. C.
Saha
, “
Electron-impact ionization of hydrogen and lithiumlike systems
,”
Phys. Rev. A
72
,
032715
(
2005
).
48.
D.-H.
Kwon
and
D. W.
Savin
, “
Theoretical electron-impact-ionization cross section for Fe11+ forming Fe 12 +
,”
Phys. Rev. A
86
,
022701
(
2012
).
49.
A.
Haque
,
M.
Hossain
,
T.
Talukder
,
M.
Hasan
,
M.
Uddin
,
A.
Basak
,
B.
Saha
, and
F.
Malik
, “
Electron impact ionization cross-section of K-shell and H- to Be-isoelectronic series: An empirical model
,”
Radiat. Phys. Chem.
91
,
50
59
(
2013
).
50.
M. S.
Pindzola
, “
Electron-impact ionization of the inner subshells of uranium
,”
Phys. Rev. A
90
,
022708
(
2014
).
51.
M.
Guerra
,
T.
Stöhlker
,
P.
Amaro
,
J.
Machado
, and
J. P.
Santos
, “
Electron impact ionization cross-sections for few-electron uranium ions
,”
J. Phys. B: At. Mol. Opt. Phys.
48
,
144027
(
2015
).
52.
A. K. F.
Haque
,
M.
Maaza
,
M. A.
Uddin
,
M. A. R.
Patoary
,
M. I.
Hossain
,
A. K.
Basak
,
B. C.
Saha
, and
M. S.
Mahbub
, “
Electron impact ionization of individual sub-shells and total of L and M shells of atomic targets with Z = 38–92
,”
J. Phys. B: At. Mol. Opt. Phys.
50
,
055005
(
2017
).
53.
D.
Lu
,
Y.
Yang
,
J.
Xiao
,
Y.
Shen
,
Y.
Fu
,
B.
Wei
,
K.
Yao
,
R.
Hutton
, and
Y.
Zou
, “
Upgrade of the electron beam ion trap in Shanghai
,”
Rev. Sci. Instrum.
85
,
093301
(
2014
).
54.
M. B.
Trzhaskovskaya
,
V. K.
Nikulin
, and
R. E. H.
Clark
, “
Radiative recombination and photoionization cross sections for heavy element impurities in plasmas
,”
At. Data Nucl. Data Tables
94
,
71
139
(
2008
).
55.
M. B.
Trzhaskovskaya
and
V. K.
Nikulin
, “
Radiative recombination data for tungsten ions: II. W47+- W 71 +
,”
At. Data Nucl. Data Tables
100
,
986
1058
(
2014
).
56.
A. E.
Kramida
and
J.
Reader
, “
Ionization energies of tungsten ions: W2+ through W 71 +
,”
At. Data Nucl. Data Tables
92
,
457
479
(
2006
).
57.
W.
Lotz
, “
An empirical formula for electron-impact ionization cross-section
,”
Z. Phys.
206
,
205
211
(
1967
).
58.
M.
Gryziński
, “
Classical theory of atomic collisions. I. Theory of inelastic collisions
,”
Phys. Rev.
138
,
A336
A358
(
1965
).
You do not currently have access to this content.