In sub-THz communication systems, compact, high-power, tunable radiation sources are required. Backward wave oscillators (BWO) have been practical devices for THz communication, but the maximum output power can be several times more than the minimum in the operation frequency range. To obtain the low peak-to-average ratio (LPAR) of the maximum power to the average power, the local maximum output power in the operation frequency range is first found theoretically and verified by particle-in-cell simulation. The LPAR 850 GHz BWO is then proposed. It applies a corrugated rectangular waveguide slow-wave structure, whose geometrical parameters are optimized using a multi-constrained optimization method. The optimized BWO operating in the frequency range from 790  to 882 GHz is simulated by the CST Particle Studio. The device can deliver at least 0.58 W with a LPAR of 1.08 when the conductivity of the slow-wave structure is 5.96 × 107 S/m. For a smaller conductivity of 3 × 107 S/m, the BWO can deliver at least 0.4 W with a LPAR of 1.13.

1.
M.
Mandehgar
and
D. R.
Grischkowsky
, “
Understanding dispersion compensation of the THz communication channels in the atmosphere
,”
IEEE Photonics Technol. Lett.
27
,
2387
2390
(
2015
).
2.
P.
Hillger
,
J.
Grzyb
,
R.
Jain
, and
U. R.
Pfeiffer
, “
Terahertz imaging and sensing applications with silicon-based technologies
,”
IEEE Trans. Terahertz Sci. Technol.
9
,
1
19
(
2019
).
3.
G.
Piro
,
K.
Yang
,
G.
Boggia
,
N.
Chopra
,
L. A.
Grieco
, and
A.
Alomainy
, “
Terahertz communications in human tissues at the nanoscale for healthcare applications
,”
IEEE Trans. Nanotechnol.
14
,
404
406
(
2015
).
4.
K.
Ajito
, “
Terahertz spectroscopy for pharmaceutical and biomedical applications
,”
IEEE Trans. Terahertz Sci. Technol.
5
,
1140
1145
(
2015
).
5.
S. S.
Dhillon
,
M. S.
Vitiello
,
E. H.
Linfield
,
A. G.
Davies
,
M. C.
Hoffmann
,
J.
Booske
,
C.
Paoloni
,
M.
Gensch
,
P.
Weightman
,
G. P.
Williams
et al, “
The 2017 terahertz science and technology roadmap
,”
J. Phys. D
50
,
043001
(
2017
).
6.
J. H.
Booske
,
R. J.
Dobbs
,
C. D.
Joye
,
C. L.
Kory
,
G. R.
Neil
,
G.-S.
Park
,
J.
Park
, and
R. J.
Temkin
, “
Vacuum electronic high power terahertz sources
,”
IEEE Trans. Terahertz Sci. Technol.
1
,
54
75
(
2011
).
7.
G. X.
Wu
,
Q.
Li
,
X.
Lei
,
C.
Ding
,
X. B.
Jiang
,
S. Z.
Fang
,
R. C.
Yang
,
F.
Wang
,
L. N.
Yue
,
Y. B.
Gong
et al, “
Design of a cascade backward-wave oscillator based on metamaterial slow-wave structure
,”
IEEE Trans. Electron Devices
65
,
1172
1178
(
2018
).
8.
S. K.
Jiang
,
G.
Yang
,
Z. L.
Wang
,
X.
Wang
,
X. M.
Zhang
,
Z. F.
Lyu
,
T.
Tang
,
H. R.
Gong
,
Y. B.
Gong
, and
Z. Y.
Duan
, “
Experimental investigation of a shape-optimized staggered double-vane slow-wave structure for terahertz traveling-wave tubes
,”
IEEE Trans. Electron Devices
69
,
4632
4637
(
2022
).
9.
B. D.
Mcvey
,
M. A.
Basten
,
J. H.
Booske
,
J.
Joe
, and
J. E.
Scharer
, “
Analysis of rectangular waveguide-gratings for amplifier applications
,”
IEEE Trans. Microwave Theory Tech.
42
,
995
1003
(
1994
).
10.
Y. M.
Shin
,
L. R.
Barnett
,
D.
Gamzina
,
N. C.
Luhmann
,
M.
Field
, and
R.
Borwick
, “
Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching
,”
Appl. Phys. Lett.
95
,
181505
(
2009
).
11.
O.
Kwon
,
J. K.
So
,
A.
Srivastava
,
M.
Sattorov
,
R. K.
Barik
,
A.
Bera
,
A. K.
Tanwar
,
S.
Park
,
I.
Baik
,
J.
Choi
,
J.
Kim
et al, “
Micro-fabricated millimeter wave vacuum electronic devices
,” in
Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves
,
Rome, Italy
(
IEEE
,
2010
), pp.
1
20
.
12.
J.
Tucek
,
K.
Kreischer
,
D.
Gallagher
,
R.
Vogel
, and
R.
Mihailovich
, “
Development and operation of a 650 GHz folded waveguide source
,” in
Proceedings of the IEEE International Vacuum Electronics Conference
,
Kitakyushu, Japan
(
IEEE
,
2007
), pp.
219
220
.
13.
M.
Mineo
and
C.
Paoloni
, “
Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications
,”
IEEE Trans. Electron Devices
57
,
1481
1484
(
2010
).
14.
G. X.
Shu
,
J. C.
Liao
,
J. C.
He
,
J. C.
Ren
,
J. J.
Lin
,
G. X.
Lin
,
Q.
Li
,
C. J.
Ruan
, and
W. L.
He
, “
A Sub-THz high-order mode backward wave oscillator driven by pseudospark sourced multiple sheet electron beams
,”
IEEE Trans. Electron Devices
69
,
5216
5222
(
2022
).
15.
J.
Zhang
,
Y.
Alfadhl
,
X. D.
Chen
,
L.
Zhang
, and
A. W.
Cross
, “
Design, simulation, and cold test of a W-band double nonparallel staggered grating backward wave oscillator
,”
IEEE Trans. Electron Devices
69
,
5814
5818
(
2022
).
16.
C.
Paoloni
,
D.
Gamzina
,
L.
Himes
,
B.
Popovic
,
R.
Barchfeld
,
L. N.
Yun
,
Y.
Zheng
,
X. P.
Tang
,
Y.
Tang
,
P.
Pan
et al, “
THz backward-wave oscillators for plasma diagnostic in nuclear fusion
,”
IEEE Trans. Plasma Sci.
44
,
369
376
(
2016
).
17.
J. J.
Feng
,
Y.
Tang
,
D.
Gamzina
,
X.
Li
,
B.
Popovic
,
M.
Gonzalez
,
L.
Himes
,
R.
Barchfeld
,
H. Y.
Li
,
P.
Pan
et al, “
Fabrication of a 0.346-THz BWO for plasma diagnostics
,”
IEEE Trans. Electron Devices
65
,
2156
2163
(
2018
).
18.
H. R.
Johnson
, “
Backward-wave oscillators
,”
Proc. IRE
43
,
684
697
(
1955
).
19.
B.
Levush
,
T. M.
Antonsen
,
A.
Bromborsky
,
W. R.
Lou
, and
Y.
Carmel
, “
Theory of relativistic backward wave oscillators with end reflections
,”
IEEE Trans. Plasma Sci
20
,
263
280
(
1992
).
20.
J. R.
Pierce
, “
Traveling-wave tubes
,”
Bell Labs Tech. J.
29
,
608
671
(
1950
).
21.
R.
BAO
,
H.
Wang
,
Y.
Li
, and
C.
Liu
, “
A multi-constrained optimization method for THz backward wave oscillators
,”
Appl. Sci.
12
,
10583
(
2022
).
22.
M. P.
Kirley
and
J. H.
Booske
, “
Terahertz conductivity of copper surfaces
,”
IEEE Trans. Terahertz Sci. Technol.
5
,
1012
1020
(
2015
).
23.
W.
Xie
,
Z.
Wang
,
F.
He
,
J.
Luo
,
D.
Zhao
, and
Q.
Liu
, “
Field theory of a terahertz staggered double-grating arrays waveguide Cerenkov traveling wave amplifier
,”
Phys. Plasmas
21
,
043103
(
2014
).
You do not currently have access to this content.