Coronal mass ejections (CMEs) are some of the most energetic and violent events in our solar system. The prediction and understanding of CMEs are of particular importance due to the impact that they can have on Earth-based satellite systems and, in extreme cases, ground-based electronics. CMEs often occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. One potential cause for these eruptions is an ideal magnetohydrodynamic (MHD) instability, such as the kink or torus instability. Previous experiments on the magnetic reconnection experiment revealed a class of MFRs that were torus-unstable but kink-stable, which failed to erupt. These “failed-tori” went through a process similar to Taylor relaxation, where the toroidal current was redistributed before the eruption ultimately failed. We have investigated this behavior through additional diagnostics that measure the current distribution at the foot points and the energy distribution before and after an event. These measurements indicate that ideal MHD effects are sufficient to explain the energy distribution changes during failed torus events. This excludes Taylor relaxation as a possible mechanism of current redistribution during an event. A new model that only requires non-ideal effects in a thin layer above the electrodes is presented to explain the observed phenomena. This work broadens our understanding of the stability of MFRs and the mechanism behind the failed torus through the improved prediction of the torus instability and through new diagnostics to measure the energy inventory and current profile at the foot points.

1.
T.
Forbes
,
J. Geophys. Res.
105
,
23153
, https://doi.org/10.1029/2000JA000005 (
2000
).
2.
J.
Chen
,
Phys. Plasmas
24
,
090501
(
2017
).
3.
L. M.
Green
,
T.
Török
,
B.
Vršnak
,
W.
Manchester
IV
, and
A.
Veronig
,
Space Sci. Rev.
214
,
46
(
2018
).
4.
T.
Pulkkinen
,
Living Rev. Sol. Phys.
4
,
1
(
2007
).
5.
National Research Council
,
Solar and Space Physics: A Science for a Technological Society
(
National Academies Press
,
2013
).
6.
N.
Crooker
,
J. A.
Joselyn
, and
J.
Feynman
, Coronal Mass Ejections (
American Geophysical Union Geophysical Monograph Series
,
Washington, DC
,
1997
), Vol.
99
.
7.
L. M.
Green
and
B.
Kliem
,
Astrophys. J., Lett.
700
,
L83
(
2009
).
8.
M.
Kuperus
and
M. A.
Raadu
,
Astron. Astrophys.
31
,
189
(
1974
).
9.
J.
Chen
,
Astrophys. J.
338
,
453
(
1989
).
10.
11.
M. D.
Kruskal
and
M.
Schwarzschild
,
Proc. R. Soc. A
223
,
348
(
1954
).
12.
G.
Bateman
,
MHD Instabilities
(
MIT Press
,
1978
).
13.
T.
Török
,
B.
Kliem
, and
V. S.
Titov
,
Astron. Astrophys.
413
,
L27
(
2004
).
14.
B.
Kliem
and
T.
Török
,
Phys. Rev. Lett.
96
,
255002
(
2006
).
15.
C. E.
Myers
,
M.
Yamada
,
H.
Ji
,
J.
Yoo
,
W.
Fox
,
J.
Jara-Almonte
,
A.
Savcheva
, and
E. E.
DeLuca
,
Nature
528
,
526
(
2015
).
16.
J. B.
Taylor
,
Phys. Rev. Lett.
33
,
1139
(
1974
).
17.
C. E.
Myers
,
M.
Yamada
,
H.
Ji
,
J.
Yoo
,
J.
Jara-Almonte
, and
W.
Fox
,
Phys. Plasmas
23
,
112102
(
2016
).
18.
A.
Alt
, “
Laboratory study of the stability of solar-relevant, arched, line-tied magnetic flux ropes
,” Ph.D. thesis (
Princeton University
,
2022
).
19.
T. G.
Forbes
and
P. A.
Isenberg
,
Astrophys. J.
373
,
294
(
1991
).
20.
The decay index is defined such that a field, B z n has a decay index of n.
21.
A.
Alt
,
C. E.
Myers
,
H.
Ji
,
J.
Jara-Almonte
,
J.
Yoo
,
S.
Bose
,
A.
Goodman
,
M.
Yamada
,
B.
Kliem
, and
A.
Savcheva
,
Astrophys. J.
908
,
41
(
2021
).
22.
V. D.
Shafranov
,
Sov. J. At. Energy
1
,
709
(
1956
).
23.
C. E.
Myers
,
M.
Yamada
,
H.
Ji
,
J.
Yoo
,
J.
Jara-Almonte
, and
W.
Fox
,
Plasma Phys. Controlled Fusion
59
,
014048
(
2017
).
24.
M. A.
Berger
and
G. B.
Field
,
J. Fluid Mech.
147
,
133
(
1984
).
25.
J. B.
Taylor
,
Rev. Mod. Phys.
58
,
741
(
1986
).
26.
M.
Yamada
,
H.
Ji
,
S.
Hsu
,
T.
Carter
,
R.
Kulsrud
,
N.
Bretz
,
F.
Jobes
,
Y.
Ono
, and
F.
Perkins
,
Phys. Plasmas
4
,
1936
(
1997
).
27.
L. A.
Kojovic
, in
IEEE Power Engineering Society General Meeting
(
IEEE
,
2003
), Vol.
2
, pp.
609
614
.
28.
J.
Yoo
, “
Experimental studies of particle acceleration and heating during magnetic reconnection
,” Ph.D. thesis (
Princeton University
,
2013
).
29.
The specific value of ztrig is not important to the final results as long as it falls within the range of most events.
30.
Due largely to experimental constraints, we have chosen to neglect the ion pressure in this equation. The consequences of this are discussed in Sec. IV C.
31.
E.
Oz
,
C. E.
Myers
,
M.
Yamada
,
H.
Ji
,
R. M.
Kulsrud
, and
J.
Xie
,
Phys. Plasmas
18
,
102107
(
2011
).
32.
D.
Ryutov
,
I.
Furno
,
T.
Intrator
,
S.
Abbate
, and
T.
Madziwa-Nussinov
,
Phys. Plasmas
13
,
032105
(
2006
).
33.
H.
Ji
,
S.
Prager
, and
J. S.
Sarff
,
Phys. Rev. Lett.
74
,
2945
(
1995
).
34.
Since the total plasma current is constant, the decrease of the center currents also implies an increase to the current of the outer ring.
35.
The amount of field line bending allowed is examined via a simplified model in Sec. VI C.
36.
We have assumed zero β so the internal energy cannot change and have neglected changes in the poloidal magnetic field energy. A poloidal energy term can be added to the LHS of Eq. (13), however this term is generally negative for an arched MFR and increases the resulting BTi1.
37.
In general, W comp , g will depend on the form of B g ( V ). If one assumes an ansatz of B g = α V n for some α and n > 1, then the RHS of Eq. (13b) is multiplied by 1 / ( 2 n 1 ). This changes the specific values but not the general conclusions of this section. The condition of n > 1 is equivalent to the rope expanding slower than a vacuum rope with B Ti = 0.
38.
J.
Hartmann
and
F.
Lazarus
,
Experimental Investigations on the Flow of Mercury in a Homogeneous Magnetic Field
(
Munksgaard
,
1937
).
39.
R. J.
Lingwood
and
T.
Alboussiere
,
Phys. Fluids
11
,
2058
(
1999
).
40.
Y.
Liu
,
Astrophys. J., Lett.
679
,
L151
(
2008
).
41.
A.
Alt
,
H.
Ji
,
J.
Yoo
,
S.
Bose
,
A.
Goodman
, and
M.
Yamada
, “
Laboratory study of the failed torus mechanism in arched, line-tied, magnetic flux ropes
,” arXiv:2301.08773 (
2023
).
42.
The ideal MHD equations presented in this section neglect thermal conduction by assuming an adiabatic equation of state. However, the adiabatic assumption is confirmed to be valid in our experiments during the timescales discussed in Sec. IV C.
43.
J. P.
Freidberg
,
Ideal MHD
(
Cambridge University Press
,
2014
).
You do not currently have access to this content.