This paper considers the instabilities of imploding aluminum metal-puff Z-pinches with an outer plasma shell. An experiment was performed on the GIT-12 generator (3.2–3.6 MA, ∼1 μs implosion times, and ∼15 cm initial Z-pinch radius). It was shown that the density profile of the Z-pinch material had the dominant effect on the growth and suppression of instabilities. Two Z-pinch load configurations were used. The first configuration provided a tailored density profile (TDP) [A. L. Velikovich et al., Phys. Rev. Lett. 77, 853 (1996)], which ensured the suppression of the magneto-Rayleigh–Taylor (MRT) instability in the Z-pinch. For the second configuration, the density profile was changed in such a way that a density notch from 10 to 0.5 μg/cm3 occurred at a radius of about 3 cm from the Z-pinch axis. The notch in the density profile and the nonmonotonic increase in density resulted in a completely unstable compression of the Z-pinch. This gave rise to large-scale instabilities, which were detected by optical diagnostics. The instabilities grew and were not suppressed even in the stagnation phase, despite a sharp increase in the density of the Z-pinch material near the axis. The results were interpreted using the model proposed by Curzon et al. [Proc. R. Soc. London A 257, 386 (1960)]. The total instability amplitude is the sum of the amplitudes of MRT and magneto-hydrodynamic (MHD) instabilities. The growth of the total instability in the density notch region is due to the development of MRT instability. Thus, if the density profile has a notch, the Z-pinch compression in the stagnation phase occurs under strong perturbations at the magnetic field/plasma interface. This results in a dramatic growth of MHD instabilities. Hence, a stable implosion of a Z-pinch with TDP is possible only if the density increases monotonically toward the axis.

1.
J. L.
Giuliani
and
R. J.
Comisso
,
IEEE Trans. Plasma Sci.
43
,
2385
(
2015
).
2.
M. G.
Haines
,
Plasma Phys. Controlled Fusion
53
,
093001
(
2011
).
3.
D. D.
Ryutov
,
M. S.
Derzon
, and
M. K.
Matzen
,
Rev. Mod. Phys.
72
,
167
(
2000
).
4.
D. A.
Yager-Elorriaga
,
M. R.
Gomez
,
D. E.
Ruiz
,
S. A.
Slutz
,
A. J.
Harvey-Thompson
,
C. A.
Jennings
,
P. F.
Knapp
,
P. F.
Schmit
,
M. R.
Weis
,
T. J.
Awe
,
G. A.
Chandler
,
M.
Mangan
,
C. E.
Myers
,
J. R.
Fein
,
B. R.
Galloway
,
M.
Geissel
,
M. E.
Glinsky
,
S. B.
Hansen
,
E. C.
Harding
,
D. C.
Lamppa
,
W. E.
Lewis
,
P. K.
Rambo
,
G. K.
Robertson
,
M. E.
Savage
,
G. A.
Shipley
,
I. C.
Smith
,
J.
Schwarz
,
D. J.
Ampleford
,
K.
Beckwith
,
K. J.
Peterson
,
J. L.
Porter
,
G. A.
Rochau
, and
D. B.
Sinars
,
Nucl. Fusion
62
,
042015
(
2022
).
5.
A. L.
Velikovich
,
F. L.
Cochran
, and
J.
Davis
,
Phys. Rev. Lett.
77
,
853
(
1996
).
6.
J. H.
Hammer
,
J. L.
Eddleman
,
P.
Springer
,
M.
Tabak
,
A.
Toor
,
K. L.
Wong
,
G. B.
Zimmerman
,
C.
Deeney
,
R.
Humphreys
,
T. J.
Nash
,
T. W. L.
Sanford
,
R. B.
Spielman
, and
J. S.
De Groot
,
Phys. Plasmas
3
,
2063
(
1996
).
7.
H.
Sze
,
J.
Banister
,
B. H.
Failor
,
J. S.
Levine
,
N.
Qi
,
A. L.
Velikovich
,
J.
Davis
,
D.
Lojewski
, and
P.
Sincerny
,
Phys. Rev. Lett.
95
,
105001
(
2005
).
8.
J. S.
Levine
,
J. W.
Banister
,
B. H.
Failor
,
N.
Qi
,
H. M.
Sze
,
A. L.
Velikovich
,
R. J.
Comissio
,
J.
Davis
, and
D.
Lojewski
,
Phys. Plasmas
13
,
082702
(
2006
).
9.
R. J.
Commisso
,
J. P.
Apruzese
,
D.
Mosher
,
D. P.
Murphy
,
B. V.
Weber
,
J. W.
Banister
,
B. H.
Failor
,
J. S.
Levine
,
N.
Qi
,
H. M.
Sze
,
A.
Bixler
,
A.
Bixler
,
P. L.
Coleman
,
A.
Jarema
,
J.
Knight
,
S.
Lee
,
M.
Krishnan
,
J.
Thompson
,
K.
Wilson
,
C. A.
Coverdale
, and
C.
Deeney
, in
Proceedings of the 16th IEEE International Pulsed Power Conference
(
IEEE
,
2007
), Vol.
2
, p.
1773
.
10.
R. B.
Baksht
,
V. I.
Oreshkin
,
A. G.
Rousskikh
, and
A. S.
Zhigalin
,
Plasma Phys. Controlled Fusion
60
,
035015
(
2018
).
11.
A. L.
Velikovich
,
F. L.
Cochran
,
J.
Davis
, and
Y. K.
Chong
,
Phys. Plasmas
5
,
3377
(
1998
).
12.
J.
Narkis
,
F.
Conti
,
A. L.
Velikovich
, and
F. N.
Beg
,
Phys. Rev. E
104
,
L023201
(
2021
).
13.
J.
Narkis
,
F.
Conti
, and
F. N.
Beg
,
Phys. Rev. E
105
,
045205
(
2022
).
14.
E. S.
Lavine
,
S. V.
Rocco
,
J. T.
Banasek
,
W. M.
Potter
,
J. B.
Greenly
,
H.
Wilhelm
,
N.
Qi
,
D. A.
Hammer
, and
B. R.
Kusse
,
Phys. Plasmas
28
,
022703
(
2021
).
15.
N.
Qi
,
S. V.
Rocco
,
J.
Engelbrecht
,
E. S.
Lavine
,
P.
de Grouchy
,
J. T.
Banasek
,
L.
Atoyan
,
T.
Byvank
,
W. M.
Potter
,
J. B.
Greenly
,
D. A.
Hammer
,
B. R.
Kusse
,
S. A.
Pikuz
,
T. A.
Shelkovenko
,
E.
Kroupp
,
A.
Fisher
, and
Y.
Maron
,
IEEE Trans. Plasma Sci.
46
,
3864
(
2018
).
16.
P. W. L.
de Grouchy
,
B. R.
Kusse
,
J.
Banasek
,
J.
Engelbrecht
,
D. A.
Hammer
,
N.
Qi
,
S.
Rocco
, and
S. N.
Bland
,
Phys. Plasmas
25
,
072701
(
2018
).
17.
F. L.
Curzon
,
A.
Folkierski
,
R.
Latham
, and
J. A.
Nation
,
Proc. R. Soc. London A
257
,
386
(
1960
).
18.
R. K.
Cherdizov
,
R. B.
Baksht
,
V. A.
Kokshenev
,
V. I.
Oreshkin
,
A. G.
Rousskikh
,
A. V.
Shishlov
,
D. L.
Shmelev
, and
A. S.
Zhigalin
,
Plasma Phys. Controlled Fusion
64
,
015011
(
2022
).
19.
D. P.
Murphy
,
R. J.
Allen
,
B. V.
Weber
,
R. J.
Commisso
,
J. P.
Apruzese
,
D. G.
Phipps
, and
D.
Mosher
,
Rev. Sci. Instrum.
79
,
10E306
(
2008
).
20.
A. Y.
Labetsky
,
V. A.
Kokshenev
,
N. E.
Kurmaev
,
V. I.
Oreshkin
,
A. G.
Rousskikh
,
A. V.
Fedyunin
,
F. I.
Fursov
,
S. A.
Chaikovsky
,
A. V.
Shishlov
, and
N. A.
Zhidkova
,
Plasma Phys. Rep.
34
,
228
(
2008
).
21.
E. S.
Lavine
,
S. V. R.
Rocco
,
W. M.
Potter
,
J.
Angel
,
E.
Freeman
,
J. T.
Banasek
,
J.
Lawson
,
J. B.
Greenly
,
H.
Wilhelm
,
D. A.
Hammer
, and
B. R.
Kusse
,
Phys. Plasmas
29
,
062702
(
2022
).
22.
See https://spegroup.ru/upload/wikifiles/1223250.pdf for “
Specifications of HSFC PRO cameras
.”
23.
D.
Klir
,
S. L.
Jackson
,
A. V.
Shishlov
,
V. A.
Kokshenev
,
K.
Rezac
,
A. R.
Beresnyak
,
R. K.
Cherdizov
,
J.
Cikhardt
,
B.
Cikhardtova
,
G. N.
Dudkin
,
J. T.
Engelbrecht
,
F. I.
Fursov
,
J.
Krasa
,
J.
Kravarik
,
P.
Kubes
,
N. E.
Kurmaev
,
V.
Munzar
,
N. A.
Ratakhin
,
K.
Turek
, and
V. A.
Varlachev
,
Matter Radiat. Extremes
5
,
026401
(
2020
).
24.
A. V.
Shishlov
,
V. A.
Kokshenev
,
N. E.
Kurmaev
,
N. A.
Labetskaya
,
F. I.
Fursov
, and
R. K.
Cherdizov
,
Rus. Phys. J.
62
,
1243
(
2019
).
25.
V. A.
Kokshenev
,
A. Y.
Labetsky
,
B. M.
Kovalchuk
,
S. A.
Chaikovsky
,
A. V.
Fedunin
,
F. I.
Fursov
,
N. E.
Kurmaev
,
A. G.
Rousskikh
,
A. V.
Shishlov
, and
N. A.
Zhidkova
, in
Proceedings of the 16th International Symposium on High Current Electronics
(Tomsk; Publishing House,
2006
), Vol.
2
, p.
272
.
26.
A. G.
Rousskikh
,
A. S.
Zhigalin
,
V. I.
Oreshkin
, and
R. B.
Baksht
,
Phys. Plasmas
24
,
063519
(
2017
).
27.
D. L.
Shmelev
,
V. I.
Oreshkin
, and
S. A.
Chaikovsky
,
J. Phys. Conf. Ser.
1115
,
022014
(
2018
).
28.
D. L.
Shmelev
,
A. S.
Zhigalin
,
S. A.
Chaikovsky
,
V. I.
Oreshkin
, and
A. G.
Rousskikh
,
Phys. Plasmas
27
,
092708
(
2020
).
29.
R. K.
Cherdizov
,
V. A.
Kokshenev
,
A. V.
Shishlov
,
R. B.
Baksht
,
V. I.
Oreshkin
,
A. G.
Rousskikh
, and
A. S.
Zhigalin
, in
Proceedings of the 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)
(
IEEE
,
2020
), p.
55
.
30.
A. G.
Rousskikh
,
A. V.
Fedyunin
,
A. P.
Artyomov
,
A. S.
Zhigalin
, and
V. I.
Oreshkin
,
Curr. Appl. Phys.
19
,
704
(
2019
).
31.
V. I.
Oreshkin
,
R. B.
Baksht
,
R. K.
Cherdizov
,
E. V.
Oreshkin
,
N. A.
Ratakhin
,
A. G.
Rousskikh
,
A. V.
Shishlov
,
V. A.
Vankevich
, and
A. S.
Zhigalin
,
Plasma Phys. Controlled Fusion
63
,
045022
(
2021
).
32.
J. R.
Angus
,
A. J.
Link
, and
A. E. W.
Schmidt
,
Phys. Plasmas
27
,
012108
(
2020
).
33.
Y.
Zhou
,
R. J.
Williams
,
P.
Ramaprabhu
,
M.
Groomd
,
B.
Thornber
,
A.
Hillier
,
W.
Mostert
,
B.
Rollin
,
S.
Balachandar
,
P. D.
Powell
,
A.
Mahalov
, and
N.
Attal
,
Physica D
423
,
132838
(
2021
).
34.
S.
Ishimaru
,
Basics Principles of Plasma Physics
(
CRC Press
,
1973
).
35.
C. A.
Coverdale
,
B.
Jones
,
D. J.
Ampleford
,
J.
Chittenden
,
C.
Jennings
,
J. W.
Thornhill
,
J. P.
Apruzese
,
R. W.
Clark
,
K. G.
Whitney
,
A.
Dasgupta
,
J.
Davis
,
J.
Guiliani
,
P. D.
LePell
,
C.
Deeney
,
D. B.
Sinars
, and
M. E.
Cuneo
,
High Energy Density Phys.
6
,
143
(
2010
).
36.
A. L.
Velikovich
,
Phys. Fluids B
3
,
492
(
1991
).
37.
Y. B.
Zel'dovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Courier Corporation
,
2002
).
38.
M. A.
Liberman
and
A. L.
Velikovich
,
Nucl. Fusion
26
,
709
(
1986
).
39.
F. S.
Felber
,
Phys. Fluids
25
,
643
(
1982
).
You do not currently have access to this content.