The generation of energetic electrons in laser fusion in an important issue. The electrons may either arise from a laser plasma instability, or from the uncoupled high temperature tail of a Maxwellian distribution. To study these in a laser fusion context, it is important to find a method accurate enough to be useful, and simple enough to be incorporated into a radiation hydrodynamics numerical simulation, the main workhorse for studying the laser fusion target. That is why analytic insights become important, they allow one to simplify the Fokker Planck theory so that a solution of it can be incorporated into a radiation hydrodynamic simulation. This work develops and analyzes a steady state Fokker Planck theory for plasmas of arbitrary Z. It develops a method of solving the simplified Fokker Planck method with a technique called sparse eigenfunction analysis. This method appears to work reasonably well when compared to the experimental results from the Rochester/NIF on plastic spherical targets with and without a silicon layer.

1.
W.
Manheimer
and
D.
Colombant
, “
Fokker Planck and Krook theory of energetic electron transport in a laser produced plasma
,”
Phys. Plasmas
22
,
092708
(
2015
).
2.
W.
Manheimer
,
D.
Colombant
, and
A.
Schmitt
, “
Analytic insights into nonlocal energy transport. II. Combined steady state Fokker Planck and Krook theory
,”
Phys. Plasmas
25
,
082712
(
2018
).
3.
W.
Manheimer
and
D.
Colombant
, “
Analytic insights into nonlocal energy transport. III. Steady state Fokker Planck theory in spherical and planar geometry
,”
Phys. Plasmas
28
,
012701
(
2021
).
4.
A. A.
Solodov
,
M. J.
Rosenberg
,
M.
Stoeckl
,
A. R.
Christopherson
,
R.
Betti
,
P. B.
Radha
,
C.
Stoeckl
,
M.
Hohenberger
,
B.
Bachmann
,
R.
Epstein
,
R. K.
Follett
,
W.
Seka
,
J. F.
Myatt
,
P.
Michel
,
S. P.
Regan
,
J. P.
Palastro
,
D. H.
Froula
,
E. M.
Campbell
, and
V. N.
Goncharov
, “
Hot-electron preheat and mitigation in polar-direct-drive experiments at the National Ignition Facility
,”
Phys. Rev. E
106
,
055204
(
2022
).
5.
A. R.
Christopherson
,
R.
Betti
,
C. J.
Forrest
,
J.
Howard
,
W.
Theobald
,
J. A.
Delettrez
,
M. J.
Rosenberg
,
A. A.
Solodov
,
C.
Stoeckl
,
D.
Pate
et al, “
Direct measurements of DT fuel preheat t from hot electrons in direct drive inertial confinement fusion
,”
Phys. Rev. Let.
127
,
055001
(
2021
).
6.
M. J.
Rosenberg
,
A. A.
Solodov
,
J. F.
Myatt
,
W.
Seka
,
P.
Michel
,
M.
Hohenberger
,
R. W.
Short
,
R.
Epstein
,
S. P.
Regan
,
E. M.
Campbell
et al, “
Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments
,”
Phys. Rev. Lett.
120
,
055001
(
2018
).
7.
M. J.
Rosenberg
,
A. A.
Solodov
,
W.
Seka
,
R. K.
Follett
,
J. F.
Myatt
,
A. V.
Maximov
,
C.
Ren
,
S.
Cao
,
P.
Michel
,
M.
Hohenberger
et al, “
Stimulated Raman scattering mechanisms and scaling behavior in planar direct-drive experiments at the National Ignition Facility
,”
Phys. Plasmas
27
,
042705
(
2020
).
8.
A. A.
Solodov
,
M. J.
Rosenberg
,
W.
Seka
,
J. F.
Myatt
,
M.
Hohenberger Short
,
S. P.
Regan
,
P.
Michel
et al, “
Hot electron generation at direct drive relevant plasma conditions at the National Ignition Facility
,”
Phys. Plasmas
27
,
052706
(
2020
).
9.
B.
Yaakobi
,
P.
Chang
,
A.
Solodov
,
C.
Stoeckl
,
D.
Edgell
,
R.
Craxton
,
S.
Hu
,
J.
Myatt
,
F.
Marshall
,
W.
Seka
, and
D.
Froula
, “
Fast electron generation in long scale length plasmas
,”
Phys. Plasmas
19
,
012704
(
2012
).
10.
E. G.
Corman
,
W. E.
Loewe
,
G. E.
Cooper
, and
A. M.
Winslow
, “
Multi-group diffusion of energetic charged particles
,”
Nucl. Fusion
15
,
377
(
1975
).
11.
B.
Yaakobi
,
A. A.
Solodov
,
J. F.
Myatt
,
J. A.
Delettrez
,
C.
Stoeckl
, and
D. H.
Froula
, “
Measurements of the divergence of fast electrons in laser-irradiated spherical targets
,”
Phys. Plasmas
20
,
092706
(
2013
).
12.
H. H.
Klein
,
W. M.
Manheimer
, and
E.
Ott
, “
Effect of side-scatter instabilities on the propagation of an intense laser beam in an inhomogeneous plasma
,”
Phys. Rev. Lett.
31
,
1187
(
1973
).
13.
C. Z.
Xiao
,
H. B.
Zhuo
,
Y.
Yin
,
Z. J.
Liu
,
C. Y.
Zheng
,
Y.
Zhao
, and
X. T.
He
, “
On the stimulated Raman sidescattering in inhomogeneous plasmas: Revisit of linear theory and three-dimensional particle-in-cell simulations
,”
Plasma Phys. Controlled Fusion
60
,
025020
(
2018
).
14.
W.
Manheimer
,
D.
Colombant
, and
A.
Schmitt
, “
Analytic insights into nonlocal energy transport. I. Krook models
,”
Phys. Plasmas
25
,
082711
(
2018
).
15.
C. Xiao, private communication (January 2022).
16.
A. Solodov, private communication (January 2022).
17.
A.
Solodov
,
M. J.
Rosenberg
,
M.
Stoeckl
,
R.
Betti
,
W.
Seka
,
R.
Epstein
,
C.
Stoeckl
,
R. K.
Follett
,
P. B.
Radha
,
S. P.
Regan
et al, “
Hot-electron preheat scaling with the incident laser intensity has been obtained with and without a Si layer
,” paper
presented at the APS-DPP Conference
, Pittsburgh,
2021
.
18.
S. P.
Obenschain
,
A. J.
Schmitt
,
J. W.
Bates
,
M. F.
Wolford
,
M. C.
Myers
,
M. W.
McGeoch
,
M.
Karasik
, and
J. L.
Weaver
, “
Direct drive with the argon fluoride laser as a path to high fusion gain with Sub-megajoule laser energy
,”
Philos. Trans. R. Soc., A
378
,
2184
(
2020
).
You do not currently have access to this content.