The novel octahedral spherical hohlraum can provide an ideal and practical approach for the next generation of laser systems to support both direct and indirect drive to achieve predictable and reproducible fusion gain via multiple schemes. To demonstrate its advantage in a naturally high symmetry at a cylindrically configured laser facility, it requires to repoint the laser beams to approach as close as possible the ideal octahedral beam configuration with an injection angle (the angle between a beam and the normal direction of its laser entrance hole (LEH)) ranging from 50° to 60°. We report our investigation and experiment on the optimum repointing scheme at the SGIII facility, which uses 32 beams, with 8 beams entering each polar LEH at 49.5° and 55°, and 4 beams entering each equatorial LEH at 61.5° and 62.1°. It contains residual imbalance between the polar and equatorial beams, leading to an asymmetry dominated by the spherical harmonic Y20 mode, which can be remarkably reduced by the stronger backscatters of equatorial beams. Our experiment demonstrated the feasibility of the 32-beam optimum repointing scheme and generation of 175 eV under 86 kJ inside a 2.4-mm-radius octahedral hohlraum with 0.7-mm-radius LEHs, which provided a strong support for the later experiment on proof-of-concept of octahedral spherical hohlraum [Lan et al., Phys. Rev. Lett. 127, 245001 (2021)]. 2D simulations on LEH closure agree well with the observations. This work opens a novel way of realization of a quasi-spherical irradiation at a cylindrically configured laser facility without supplementary symmetry control.

1.
D.
Clery
, “
Explosion marks laser fusion breakthrough
,”
Science
378
,
1154
(
2022
).
2.
J.
Tollefson
and
E.
Gibney
, “
Nuclear-fusion lab achieves ’ignition’: What does it mean?
,”
Nature
612
,
597
(
2022
).
3.
B.
Bishop
,
see
https://www.llnl.gov/news/national-ignition-facility-achieves-fusion-ignition for “
National Ignition Facility Achieves Fusion Ignition
.”
4.
E. M.
Campbell
and
W. J.
Hogan
, “
The National Ignition Facility—Applications for inertial fusion energy and high-energy-density science
,”
Plasma Phys. Controlled Fusion
41
,
B39
(
1999
).
5.
C. A.
Haynam
,
P. J.
Wegner
,
J. M.
Auerbach
,
M. W.
Bowers
,
S. N.
Dixit
,
G. V.
Erbert
,
G. M.
Heestand
,
M. A.
Hanesian
,
M. R.
Hermann
,
K. S.
Jancaitis
,
K. R.
Manes
,
C. D.
Marshall
,
N. C.
Mehta
,
J.
Menapace
,
E.
Moses
,
J. R.
Murray
,
M. C.
Nostrand
,
C. D.
Orth
,
R.
Patterson
,
R. A.
Sacks
,
M. J.
Shaw
,
M.
Spaeth
,
S. B.
Sutton
,
W. H.
Williams
,
C. C.
Widmayer
,
R. K.
White
,
S. T.
Yang
, and
B. M.
Van Wonterghem
, “
National Ignition Facility laser performance status
,”
Appl. Opt.
46
,
3276
(
2007
).
6.
J.
Nilsen
,
A. L.
Kritcher
,
M. E.
Martin
,
R. E.
Tipton
,
H. D.
Whitley
,
D. C.
Swift
,
T.
Doeppner
,
B. L.
Bachmann
,
A. E.
Lazicki
,
N. B.
Kostinski
,
B. R.
Maddox
,
G. W.
Collins
,
S. H.
Glenzer
, and
R. W.
Falcone
, “
Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum
,”
Matter Radiat. Extremes
5
,
018401
(
2020
).
7.
J.
Lindl
, “
Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain
,”
Phys. Plasmas
2
,
3933
(
1995
).
8.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion
(
Clarendon
,
Oxford
,
2004
).
9.
K.
Lan
, “
Dream fusion in octahedral spherical hohlraum
,”
Matter Radiat. Extremes
7
,
055701
(
2022
).
10.
J. L.
Kline
,
D. A.
Callahan
,
S. H.
Glenzer
,
N. B.
Meezan
,
J. D.
Moody
,
D. E.
Hinkel
,
O. S.
Jones
,
A. J.
MacKinnon
,
R.
Bennedetti
,
R. L.
Berger
,
D.
Bradley
,
E. L.
Dewald
,
I.
Bass
,
C.
Bennett
,
M.
Bowers
,
G.
Brunton
,
J.
Bude
,
S.
Burkhart
,
A.
Condor
,
J. M.
Di Nicola
,
P.
Di Nicola
,
S. N.
Dixit
,
T.
Doeppner
,
E. G.
Dzenitis
,
G.
Erbert
,
J.
Folta
,
G.
Grim
,
S.
Glenn
,
A.
Hamza
,
S. W.
Haan
,
J.
Heebner
,
M.
Henesian
,
M.
Hermann
,
D. G.
Hicks
,
W. W.
Hsing
,
N.
Izumi
,
K.
Jancaitis
,
O. S.
Jones
,
D.
Kalantar
,
S. F.
Khan
,
R.
Kirkwood
,
G. A.
Kyrala
,
K.
LaFortune
,
O. L.
Landen
,
L.
Lagin
,
D.
Larson
,
S. L.
Pape
,
T.
Ma
,
A. G.
MacPhee
,
P. A.
Michel
,
P.
Miller
,
M.
Montincelli
,
A. S.
Moore
,
A.
Nikroo
,
M.
Nostrand
,
R. E.
Olson
,
A.
Pak
,
H. S.
Park
,
J. P.
Patel
,
L.
Pelz
,
J.
Ralph
,
S. P.
Regan
,
H. F.
Robey
,
M. D.
Rosen
,
J. S.
Ross
,
M. B.
Schneider
,
M.
Shaw
,
V. A.
Smalyuk
,
D. J.
Strozzi
,
T.
Suratwala
,
L. J.
Suter
,
R.
Tommasini
,
R. P. J.
Town
,
B.
Van Wonterghem
,
P.
Wegner
,
K.
Widmann
,
C.
Widmayer
,
H.
Wilkens
,
E. A.
Williams
,
M. J.
Edwards
,
B. A.
Remington
,
B. J.
MacGowan
,
J. D.
Kilkenny
,
J. D.
Lindl
,
L. J.
Atherton
,
S. H.
Batha
, and
E.
Moses
, “
Hohlraum energetics scaling to 520 TW on the National Ignition Facility
,”
Phys. Plasmas
20
,
056314
(
2013
).
11.
S.
Le Pape
,
L. F.
Berzak Hopkins
,
L.
Divol
,
A.
Pak
,
E. L.
Dewald
,
S.
Bhandarkar
,
L. R.
Bennedetti
,
T.
Bunn
,
J.
Biener
,
J.
Crippen
,
D.
Casey
,
D.
Edgell
,
D. N.
Fittinghoff
,
M.
Gatu-Johnson
,
C.
Goyon
,
S.
Haan
,
R.
Hatarik
,
M.
Havre
,
D. D.-M.
Ho
,
N.
Izumi
,
J.
Jaquez
,
S. F.
Khan
,
G. A.
Kyrala
,
T.
Ma
,
A. J.
Mackinnon
,
A. G.
MacPhee
,
B. J.
MacGowan
,
N. B.
Meezan
,
J.
Milovich
,
M.
Millot
,
P.
Michel
,
S. R.
Nagel
,
A.
Nikroo
,
P.
Patel
,
J.
Ralph
,
J. S.
Ross
,
N. G.
Rice
,
D.
Strozzi
,
M.
Stadermann
,
P.
Volegov
,
C.
Yeamans
,
C.
Weber
,
C.
Wild
,
D.
Callahan
, and
O. A.
Hurricane
, “
Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility
,”
Phys. Rev. Lett.
120
,
245003
(
2018
).
12.
D. A.
Callahan
,
O. A.
Hurricane
,
J. E.
Ralph
,
C. A.
Thomas
,
K. L.
Baker
,
L. R.
Benedetti
,
L. F.
Berzak Hopkins
,
D. T.
Casey
,
T.
Chapman
,
C. E.
Czajka
,
E. L.
Dewald
,
L.
Divol
,
T.
Döppner
,
D. E.
Hinkel
,
M.
Hohenberger
,
L. C.
Jarrott
,
S. F.
Khan
,
A. L.
Kritcher
,
O. L.
Landen
,
S.
LePape
,
S. A.
MacLaren
,
L. P.
Masse
,
N. B.
Meezan
,
A. E.
Pak
,
J. D.
Salmonson
,
D. T.
Woods
,
N.
Izumi
,
T.
Ma
,
D. A.
Mariscal
,
S. R.
Nagel
,
J. L.
Kline
,
G. A.
Kyrala
,
E. N.
Loomis
,
S. A.
Yi
,
A. B.
Zylstra
, and
S. H.
Batha
, “
Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility laser
,”
Phys. Plasmas
25
,
056305
(
2018
).
13.
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B. B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
et al, “
Lawson criterion for ignition exceeded in an inertial fusion experiment
,”
Phys. Rev. Lett.
129
,
075001
(
2022
).
14.
A. B.
Zylstra
,
O. A.
Hurricane
,
D. A.
Callahan
,
A. L.
Kritcher
,
J. E.
Ralph
,
H. F.
Robey
,
J. S.
Ross
,
C. V.
Young
,
K. L.
Baker
,
D. T.
Casey
et al, “
Burning plasma achieved in inertial fusion
,”
Nature
601
,
542
(
2022
).
15.
K.
Lan
,
J.
Liu
,
D.
Lai
,
W.
Zheng
, and
X.
He
, “
High flux symmetry of the spherical hohlraum with octahedral 6LEHs at a golden hohlraum to-capsule radius ratio
,” arXiv:1311.1263v2 (
2013
);
K.
Lan
,
J.
Liu
,
D.
Lai
,
W.
Zheng
, and
X.
He
,
Phys. Plasmas
21
,
010704
(
2014
).
16.
K.
Lan
,
X.
He
,
J.
Liu
,
W.
Zheng
, and
D.
Lai
, “
Octahedral spherical hohlraum and its laser arrangement for inertial fusion
,”
Phys. Plasmas
21
,
052704
(
2014
).
17.
K.
Lan
and
W.
Zheng
, “
Novel spherical hohlraum with cylindrical laser entrance holes and shields
,”
Phys. Plasmas
21
,
090704
(
2014
).
18.
K.
Lan
,
J.
Liu
,
Z.
Li
,
X.
Xie
,
W.
Huo
,
Y.
Chen
,
G.
Ren
,
C.
Zheng
,
D.
Yang
,
S.
Li
,
Z.
Yang
,
L.
Guo
,
S.
Li
,
M.
Zhang
,
X.
Han
,
C.
Zhai
,
L.
Hou
,
Y.
Li
,
K.
Deng
,
Z.
Yuan
,
X.
Zhan
,
F.
Wang
,
G.
Yuan
,
H.
Zhang
,
B.
Jiang
,
L.
Huang
,
W.
Zhang
,
K.
Du
,
R.
Zhao
,
P.
Li
,
W.
Wang
,
J.
Su
,
X.
Deng
,
D.
Hu
,
W.
Zhou
,
H.
Jia
,
Y.
Ding
,
W.
Zheng
, and
X.
He
, “
Progress in octahedral spherical hohlraum study
,”
Matter Radiat. Extremes
1
,
8
(
2016
).
19.
W.
Zheng
,
X.
Wei
,
Q.
Zhu
,
F.
Jing
,
D.
Hu
,
X.
Yuan
,
W.
Dai
,
W.
Zhou
,
F.
Wang
,
D.
Xu
,
X.
Xie
,
B.
Feng
,
Z.
Peng
,
L.
Guo
,
Y.
Chen
,
X.
Zhang
,
L.
Liu
,
D.
Lin
,
Z.
Dang
,
Y.
Xiang
,
R.
Zhang
,
F.
Wang
,
H.
Jia
, and
X.
Deng
, “
Laser performance upgrade for precise ICF experiment in SG-III laser facility
,”
Matter Radiat. Extremes
2
,
243
(
2017
).
20.
V. T.
Tikhonchuk
,
T.
Gong
,
N.
Jourdain
,
O.
Renner
,
F. P.
Condamine
,
K. Q.
Pan
,
W.
Nazarov
,
L.
Hudec
,
J.
Limpouch
,
R.
Liska
,
M.
Kru°s
,
F.
Wang
,
D.
Yang
,
S. W.
Li
,
Z. C.
Li
,
Z. Y.
Guan
,
Y. G.
Liu
,
T.
Xu
,
X. S.
Peng
,
X. M.
Liu
,
Y. L.
Li
,
J.
Li
,
T. M.
Song
,
J. M.
Yang
,
S. E.
Jiang
,
B. H.
Zhang
,
W. Y.
Huo
,
G.
Ren
,
Y. H.
Chen
,
W.
Zheng
,
Y. K.
Ding
,
K.
Lan
, and
S.
Weber
, “
Studies of laser-plasma interaction physics with low-density targets for directdrive inertial confinement fusion on the Shenguang III prototype
,”
Matter Radiat. Extremes
6
,
025902
(
2021
).
21.
X.
Deng
,
X.
Huang
,
D.
Wang
,
Y.
Yang
,
X.
Zhang
, and
D.
Hu
, “
Beam wavefront retrieval by convoluted spatial spectral benchmark
,”
Matter Radiat. Extremes
6
,
045902
(
2021
).
22.
W.
Huo
,
Z.
Li
,
D.
Yang
,
K.
Lan
,
J.
Liu
,
G.
Ren
,
S.
Li
,
Z.
Yang
,
L.
Guo
,
L.
Hou
,
X.
Xie
,
Y.
Li
,
K.
Deng
,
Z.
Yuan
,
X.
Zhan
,
G.
Yuan
,
H.
Zhang
,
B.
Jiang
,
L.
Huang
,
K.
Du
,
R.
Zhao
,
P.
Li
,
W.
Wang
,
J.
Su
,
Y.
Ding
,
X.
He
, and
W.
Zhang
, “
First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole
,”
Matter Radiat. Extremes
1
,
2
(
2016
).
23.
W. Y.
Huo
,
Z.
Li
,
Y.-H.
Chen
,
X.
Xie
,
K.
Lan
,
J.
Liu
,
G.
Ren
,
Y.
Li
,
Y.
Liu
,
X.
Jiang
,
D.
Yang
,
S.
Li
,
L.
Guo
,
H.
Zhang
,
L.
Hou
,
H.
Du
,
X.
Peng
,
T.
Xu
,
C.
Li
,
X.
Zhan
,
G.
Yuan
,
H.
Zhang
,
B.
Jiang
,
L.
Huang
,
K.
Du
,
R.
Zhao
,
P.
Li
,
W.
Wang
,
J.
Su
,
Y.
Ding
,
X.-T.
He
, and
W.
Zhang
, “
First investigation on the radiation field of the spherical hohlraum
,”
Phys. Rev. Lett.
117
,
025002
(
2016
).
24.
X.
Xie
,
Z.
Li
,
S.
Li
,
Y.
Huang
,
L.
Jing
,
D.
Yang
,
W.
Huo
,
Y.
Chen
,
K.
Lan
,
L.
Guo
,
X.
Jiang
,
L.
Hou
,
H.
Du
,
Y.
Liu
,
H.
Zhang
,
X.
Peng
,
T.
Xu
,
C.
Li
,
X.
Zhan
,
F.
Wang
,
J.
Yang
,
S.
Liu
,
S.
Jiang
, and
Y.
Ding
, “
Radiation flux study of spherical hohlraums at the SGIII prototype facility
,”
Phys. Plasmas
23
,
112701
(
2016
).
25.
Z.
Li
,
D.
Yang
,
S.
Li
,
W. Y.
Huo
,
K.
Lan
,
J.
Liu
,
G.
Ren
,
Y.-H.
Chen
,
Z.
Yang
,
L.
Guo
,
L.
Hou
,
X.
Xie
,
Y.
Li
,
K.
Deng
,
Z.
Yuan
,
X.
Zhan
,
G.
Yuan
,
H.
Zhang
,
B.
Jiang
,
L.
Huang
,
K.
Du
,
R.
Zhao
,
P.
Li
,
W.
Wang
,
J.
Su
,
S.
Jiang
,
Y.
Ding
,
X.-T.
He
, and
W.
Zhang
, “
Comparison of the laser spot movement inside cylindrical and spherical hohlraums
,”
Phys. Plasmas
24
,
072711
(
2017
).
26.
K.
Lan
,
Z.
Li
,
X.
Xie
,
Y.-H.
Chen
,
C.
Zheng
,
C.
Zhai
,
L.
Hao
,
D.
Yang
,
W. Y.
Huo
,
G.
Ren
,
X.
Peng
,
T.
Xu
,
Y.
Li
,
S.
Li
,
Z.
Yang
,
L.
Guo
,
L.
Hou
,
Y.
Liu
,
H.
Wei
,
X.
Liu
,
W.
Cha
,
X.
Jiang
,
Y.
Mei
,
Y.
Li
,
K.
Deng
,
Z.
Yuan
,
X.
Zhan
,
H.
Zhang
,
B.
Jiang
,
W.
Zhang
,
X.
Deng
,
J.
Liu
,
K.
Du
,
Y.
Ding
,
X.
Wei
,
W.
Zheng
,
X.
Chen
,
E. M.
Campbell
, and
X.-T.
He
, “
Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target
,”
Phys. Rev. E
95
,
031202(R)
(
2017
).
27.
Y.
Chen
,
Z.
Li
,
X.
Xie
,
C.
Zheng
,
C.
Zhai
,
L.
Hao
,
D.
Yang
,
W.
Huo
,
G.
Ren
,
J.
Liu
,
X.
Peng
,
T.
Xu
,
Y.
Li
,
S.
Li
,
Z.
Yang
,
L.
Guo
,
L.
Hou
,
Y.
Liu
,
H.
Wei
,
X.
Liu
,
W.
Cha
,
Y.
Li
,
K.
Deng
,
Z.
Yuan
,
X.
Zhan
,
H.
Zhang
,
B.
Jiang
,
W.
Zhang
,
K.
Du
,
X.
Deng
,
Y.
Ding
,
X.
Wei
,
W.
Zheng
,
X.
Chen
,
X.
He
, and
K.
Lan
, “
First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility
,”
Matter Radiat. Extremes
2
,
77
(
2017
).
28.
W. Y.
Huo
,
Z.
Li
,
Y.-H.
Chen
,
X.
Xie
,
G.
Ren
,
H.
Cao
,
S.
Li
,
K.
Lan
,
J.
Liu
,
Y.
Li
,
S.
Li
,
L.
Guo
,
Y.
Liu
,
D.
Yang
,
X.
Jiang
,
L.
Hou
,
H.
Du
,
X.
Peng
,
T.
Xu
,
C.
Li
,
X.
Zhan
,
Z.
Wang
,
K.
Deng
,
Q.
Wang
,
B.
Deng
,
F.
Wang
,
J.
Yang
,
S.
Liu
,
S.
Jiang
,
G.
Yuan
,
H.
Zhang
,
B.
Jiang
,
W.
Zhang
,
Q.
Gu
,
Z.
He
,
K.
Du
,
X.
Deng
,
W.
Zhou
,
L.
Wang
,
X.
Huang
,
Y.
Wang
,
D.
Hu
,
K.
Zheng
,
Q.
Zhu
, and
Y.
Ding
, “
First octahedral spherical Hohlraum energetics experiment at the SGIII laser facility
,”
Phys. Rev. Lett.
120
,
165001
(
2018
).
29.
Y.-H.
Chen
,
Z.
Li
,
H.
Cao
,
K.
Pan
,
S.
Li
,
X.
Xie
,
B.
Deng
,
Q.
Wang
,
Z.
Cao
,
L.
Hou
,
X.
Che
,
P.
Yang
,
Y.
Li
,
X.
He
,
T.
Xu
,
Y.
Liu
,
Y.
Li
,
X.
Liu
,
H.
Zhang
,
W.
Zhang
,
B.
Jiang
,
J.
Xie
,
W.
Zhou
,
X.
Huang
,
W. Y.
Huo
,
G.
Ren
,
K.
Li
,
X.
Hang
,
S.
Li
,
C.
Zhai
,
J.
Liu
,
S.
Zou
,
Y.
Ding
, and
K.
Lan
, “
Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums
,”
Matter Radiat. Extremes
7
,
065901
(
2022
).
30.
S. W.
Haan
,
J. D.
Lindl
,
D. A.
Callahan
,
D. S.
Clark
,
J. D.
Salmonson
,
B. A.
Hammel
,
L. J.
Atherton
,
R. C.
Cook
,
M. J.
Edwards
,
S.
Glenzer
,
A. V.
Hamza
,
S. P.
Hatchett
,
M. C.
Herrmann
,
D. E.
Hinkel
,
D. D.
Ho
,
H.
Huang
,
O. S.
Jones
,
J.
Kline
,
G.
Kyrala
,
O. L.
Landen
,
B. J.
MacGowan
,
M. M.
Marinak
,
D. D.
Meyerhofer
,
J. L.
Milovich
,
K. A.
Moreno
,
E. I.
Moses
,
D. H.
Munro
,
A.
Nikroo
,
R. E.
Olson
,
K.
Peterson
,
S. M.
Pollaine
,
J. E.
Ralph
,
H. F.
Robey
,
B. K.
Spears
,
P. T.
Springer
,
L. J.
Suter
,
C. A.
Thomas
,
R. P.
Town
,
R.
Vesey
,
S. V.
Weber
,
H. L.
Wilkens
, and
D. C.
Wilson
, “
Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
,”
Phys. Plasmas
18
,
051001
(
2011
).
31.
H.
Cao
,
Y.
Chen
,
C.
Zhai
,
C.
Zheng
, and
K.
Lan
, “
Design of octahedral spherical hohlraum for CH Rev5 ignition capsule
,”
Phys. Plasmas
24
,
082701
(
2017
).
32.
S.
Jiang
,
Y.
Huang
,
L.
Jing
,
H.
Li
,
T.
Huang
, and
Y.
Ding
, “
A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes
,”
Phys. Plasmas
23
,
012702
(
2016
).
33.
P. E.
Masson-Laborde
,
M. C.
Monteil
,
V.
Tassin
,
F.
Philippe
,
P.
Gauthier
,
A.
Casner
,
S.
Depierreux
,
C.
Neuville
,
B.
Villette
,
S.
Laffite
,
P.
Seytor
,
P.
Fremerye
,
W.
Seka
,
D.
Teychenné
,
A.
Debayle
,
D.
Marion
,
P.
Loiseau
, and
M.
Casanova
, “
Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums
,”
Phys. Plasmas
23
,
022703
(
2016
).
34.
W. A.
Farmer
,
M.
Tabak
,
J. H.
Hammer
,
P. A.
Amendt
, and
D. E.
Hinkel
, “
High-temperature hohlraum designs with multiple laser-entrance holes
,”
Phys. Plasmas
26
,
032701
(
2019
).
35.
W.
Wang
and
R. S.
Craxton
, see https://www.lle.rochester.edu/media/publications/high_school_reports/documents/hs_reports/2019/Wang_William.pdf for “
Development of a Beam Configuration for the SG4 Laser to Support both Direct and Indirect Drive
.”
36.
S.
Craxton
, “
A new beam configuration to support both spherical hohlraums and symmetric direct drive
,” in
The 62nd Annual Meeting of the American Physical Society Division of Plasma Physics
,
2020
.
37.
W. Y.
Wang
and
R. S.
Craxton
, “
Pentagonal prism spherical hohlraums for OMEGA
,”
Phys. Plasmas
28
,
062703
(
2021
).
38.
W. Y.
Wang
and
R. S.
Craxton
, see https://www.lle.rochester.edu/media/publications/lle_review/documents/v166/166_02_Wang.pdf for “
A Proposal for Pentagonal Prism Spherical Hohlraum Experiments on OMEGA
.”
39.
K.
Lan
,
T.
Feng
,
D.
Lai
,
Y.
Xu
, and
X.
Meng
, “
Study on two-dimensional transfer of radiative heating wave
,”
Laser Part. Beams
23
,
275
(
2005
).
40.
H.
Yong
,
P.
Song
,
C.
Zhai
,
D.
Kang
,
J.
Gu
,
X.
Hang
,
P.
Gu
, and
S.
Jiang
, “
Numerical simulation of 2D radiation-drive ignition implosion process
,”
Commun. Theor. Phys.
59
,
737
(
2013
).
41.
K.
Lan
,
Y.
Dong
,
J.
Wu
,
Z.
Li
,
Y.
Chen
,
H.
Cao
,
L.
Hao
,
S.
Li
,
G.
Ren
,
W.
Jiang
,
C.
Yin
,
C.
Sun
,
Z.
Chen
,
T.
Huang
,
X.
Xie
,
S.
Li
,
W.
Miao
,
X.
Hu
,
Q.
Tang
,
Z.
Song
,
J.
Chen
,
Y.
Xiao
,
X.
Che
,
B.
Deng
,
Q.
Wang
,
K.
Deng
,
Z.
Cao
,
X.
Peng
,
X.
Liu
,
X.
He
,
J.
Yan
,
Y.
Pu
,
S.
Tu
,
Y.
Yuan
,
B.
Yu
,
F.
Wang
,
J.
Yang
,
S.
Jiang
,
L.
Gao
,
J.
Xie
,
W.
Zhang
,
Y.
Liu
,
Z.
Zhang
,
H.
Zhang
,
Z.
He
,
K.
Du
,
L.
Wang
,
X.
Chen
,
W.
Zhou
,
X.
Huang
,
H.
Guo
,
K.
Zheng
,
Q.
Zhu
,
W.
Zheng
,
W. Y.
Huo
,
X.
Hang
,
K.
Li
,
C.
Zhai
,
H.
Xie
,
L.
Li
,
J.
Liu
,
Y.
Ding
, and
W.
Zhang
, “
First inertial confinement fusion implosion experiment in octahedral spherical hohlraum
,”
Phys. Rev. Lett.
127
,
245001
(
2021
).
42.
S.
Li
,
K.
Lan
, and
J.
Liu
, “
Study on size of laser entrance hole shield for ignition octahedral spherical hohlraums
,”
Laser Part. Beams
33
,
731
(
2015
).
43.
Z.
Cao
,
F.
Jin
,
J.
Dong
,
Z.
Yang
,
X.
Zhan
,
Z.
Yuan
,
H.
Zhang
,
S.
Jiang
, and
Y.
Ding
, “
Soft x-ray low-pass filter with a square-pore microchannel plate
,”
Opt. Lett.
38
,
1509
(
2013
).
44.
Q.
Wang
,
B.
Deng
,
Z.
Cao
,
T.
Chen
, and
K.
Deng
, “
Development of a gated x-ray imager with multiple views and spectral selectivity for observing plasmas evolution in hohlraums
,”
Rev. Sci. Instrum.
90
,
073301
(
2019
).
45.
L.
Guo
,
S. W.
Li
,
J.
Zheng
,
Z. C.
Li
,
D.
Yang
,
H. B.
Du
,
L. F.
Hou
,
Y. L.
Cui
,
J. M.
Yang
,
S. Y.
Liu
,
S. E.
Jiang
, and
Y. K.
Ding
, “
A compact flat-response x-ray detector for the radiation flux in the range from 1.6 keV to 4.4 keV
,”
Meas. Sci. Technol.
23
,
065902
(
2012
).
46.
F.
Wang
,
S.
Jiang
,
Y.
Ding
,
S.
Liu
,
J.
Yang
,
S.
Li
,
T.
Huang
,
Z.
Cao
,
Z.
Yang
,
X.
Hu
,
W.
Miao
,
J.
Zhang
,
Z.
Wang
,
G.
Yang
,
R.
Yi
,
Q.
Tang
,
L.
Kuang
,
Z.
Li
,
D.
Yang
,
Y.
Li
,
X.
Peng
,
K.
Ren
, and
B.
Zhang
, “
Recent diagnostic developments at the 100 kJ-level laser facility in China
,”
Matter Radiat. Extremes
5
,
035201
(
2020
).
47.
K.
Lan
,
P.
Gu
,
G.
Ren
,
X.
Li
,
C.
Wu
,
W.
Huo
,
D.
Lai
, and
X.
He
, “
An initial design of hohlraum driven by a shaped laser pulse
,”
Laser Part. Beams
28
,
421
(
2010
).
48.
L.
Hao
,
Y. Q.
Zhao
,
D.
Yang
,
Z. J.
Liu
,
X. Y.
Hu
,
C. Y.
Zheng
,
S. Y.
Zou
,
F.
Wang
,
X. S.
Peng
,
Z. C.
Li
,
S. W.
Li
,
T.
Xu
, and
H. Y.
Wei
, “
Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code
,”
Phys. Plasmas
21
,
072705
(
2014
).
49.
K.
Lan
and
P.
Song
, “
Foam Au driven by 4 ω 2 ω ignition laser pulse for inertial confinement fusion
,”
Phys. Plasmas
24
,
052707
(
2017
).
50.
Y.
Chen
,
K.
Lan
,
W.
Zheng
, and
E. M.
Campbell
, “
High coupling efficiency of foam spherical hohlraum driven by 2ω laser light
,”
Phys. Plasmas
25
,
022702
(
2018
).
51.
Y.
Gao
,
Y.
Cui
,
L.
Ji
,
D.
Rao
,
X.
Zhao
,
F.
Li
,
D.
Liu
,
W.
Feng
,
L.
Xia
,
J.
Liu
et al, “
Development of low-coherence high-power laser drivers for inertial confinement fusion
,”
Matter Radiat. Extremes
5
,
065201
(
2020
).
52.
R. K.
Follet
,
J. G.
Shaw
,
J. F.
Myatt
,
H.
Wen
,
D. H.
Froula
, and
J. P.
Palastro
, “
Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers
,”
Phys. Plasmas
28
,
032103
(
2021
).
53.
N.
Jourdain
,
U.
Chaulagain
,
M.
Havlík
,
D.
Kramer
,
D.
Kumar
,
I.
Majerová
,
V. T.
Tikhonchuk
,
G.
Korn
, and
S.
Weber
, “
The L4n laser beamline of the P3-installation: Towards high-repetition rate high-energy density physics at ELI-Beamlines
,”
Matter Radiat. Extremes
6
,
015401
(
2021
).
54.
X.
Guo
,
X.
Zhang
,
D.
Xu
,
W.
Chen
,
Y.
Guo
,
K.
Lan
, and
B.
Shen
, “
Intense vortical-field generation using coherent superposition of multiple vortex beams
,”
Sci. Rep.
13
,
1104
(
2023
).
You do not currently have access to this content.