We present a robust optimization algorithm for the design of electromagnetic coils that generate vacuum magnetic fields with nested flux surfaces and precise quasi-symmetry. The method is based on a bilevel optimization problem, where the outer coil optimization is constrained by a set of inner least squares optimization problems whose solutions describe magnetic surfaces. The outer optimization objective targets coils that generate a field with nested magnetic surfaces and good quasi-symmetry. The inner optimization problems identify magnetic surfaces when they exist, and approximate surfaces in the presence of magnetic islands or chaos. We show that this formulation can be used to heal islands and chaos, thus producing coils that result in magnetic fields with precise quasi-symmetry. We show that the method can be initialized with coils from the traditional two-stage coil design process, as well as coils from a near-axis expansion optimization. We present a numerical example where island chains are healed and quasi-symmetry is optimized up to surfaces with aspect ratio 6. Another numerical example illustrates that the aspect ratio of nested flux surfaces with optimized quasi-symmetry can be decreased from 6 to approximately 4. The last example shows that our approach is robust and a cold-start using coils from a near-axis expansion optimization.

1.
A.
Giuliani
,
F.
Wechsung
,
G.
Stadler
,
A.
Cerfon
, and
M.
Landreman
, “
Direct computation of magnetic surfaces in Boozer coordinates and coil optimization for quasisymmetry
,”
J. Plasma Phys.
88
,
905880401
(
2022
).
2.
P.
Helander
, “
Theory of plasma confinement in non-axisymmetric magnetic fields
,”
Rep. Prog. Phys.
77
,
087001
(
2014
).
3.
M.
Landreman
and
E.
Paul
, “
Magnetic fields with precise quasisymmetry for plasma confinement
,”
Phys. Rev. Lett.
128
,
035001
(
2022
).
4.
M.
Landreman
,
B.
Medasani
,
F.
Wechsung
,
A.
Giuliani
,
R.
Jorge
, and
C.
Zhu
, “
SIMSOPT: A flexible framework for stellarator optimization
,”
J. Open Source Software
6
,
3525
(
2021
).
5.
S. R.
Hudson
,
A.
Reiman
,
D.
Strickler
,
A.
Brooks
,
D. A.
Monticello
, and
S. P.
Hirshman
, “
Free-boundary full-pressure island healing in stellarator equilibria: Coil-healing
,”
Plasma Phys. Controlled Fusion
44
,
1377
1382
(
2002
).
6.
S.
Hudson
,
D.
Monticello
,
A.
Reiman
,
D.
Strickler
,
S.
Hirshman
,
L.-P.
Ku
,
E.
Lazarus
,
A.
Brooks
,
M.
Zarnstorff
,
A.
Boozer
,
G.-Y.
Fu
, and
G.
Neilson
, “
Constructing integrable high-pressure full-current free-boundary stellarator magnetohydrodynamic equilibrium solutions
,”
Nucl. Fusion
43
,
1040
1046
(
2003
).
7.
C.
Zhu
,
D. A.
Gates
,
S. R.
Hudson
,
H.
Liu
,
Y.
Xu
,
A.
Shimizu
, and
S.
Okamura
, “
Identification of important error fields in stellarators using the Hessian matrix method
,”
Nucl. Fusion
59
,
126007
(
2019
).
8.
M.
Landreman
,
B.
Medasani
, and
C.
Zhu
, “
Stellarator optimization for good magnetic surfaces at the same time as quasisymmetry
,”
Phys. Plasmas
28
,
092505
(
2021
).
9.
A.
Baillod
,
J.
Loizu
,
J.
Graves
, and
M.
Landreman
, “
Stellarator optimization for nested magnetic surfaces at finite β and toroidal current
,”
Phys. Plasmas
29
,
042505
(
2022
).
10.
J. R.
Cary
, “
Vacuum magnetic fields with dense flux surfaces
,”
Phys. Rev. Lett.
49
,
276
(
1982
).
11.
W.
Dommaschk
, “
Finite field harmonics for stellarators with improved aspect ratio
,”
Z. Naturforsch. A
37
,
866
875
(
1982
).
12.
J. R.
Cary
, “
Construction of three-dimensional vacuum magnetic fields with dense nested flux surfaces
,”
Phys. fluids
27
,
119
128
(
1984
).
13.
J. D.
Hanson
and
J. R.
Cary
, “
Elimination of stochasticity in stellarators
,”
Phys. Fluids
27
,
767
769
(
1984
).
14.
J. R.
Cary
and
J. D.
Hanson
, “
Stochasticity reduction
,”
Phys. Fluids
29
,
2464
2473
(
1986
).
15.
B. F.
Lee
,
E. J.
Paul
,
G.
Stadler
, and
M.
Landreman
, “
Stellarator coil optimization supporting multiple magnetic configurations
,”
Nuclear Fusion
63
(
1
),
014002
(
2022
).
16.
D.
Dudt
,
R.
Conlin
,
D.
Panici
, and
E.
Kolemen
, “
The DESC stellarator code suite part III: Quasi-symmetry optimization
,” arXiv:2204.00078.
17.
A. H.
Boozer
, “
Curl-free magnetic fields for stellarator optimization
,”
Phys. Plasmas
26
,
102504
(
2019
).
18.
R.
Dewar
,
S.
Hudson
, and
P.
Price
, “
Almost invariant manifolds for divergence-free fields
,”
Phys. Lett. A
194
,
49
56
(
1994
).
19.
A.
Giuliani
,
F.
Wechsung
,
A.
Cerfon
,
G.
Stadler
, and
M.
Landreman
, “
Single-stage gradient-based stellarator coil design: Optimization for near-axis quasi-symmetry
,”
J. Comput. Phys.
459
,
111147
(
2022
).
20.
M.
Landreman
and
A. H.
Boozer
, “
Efficient magnetic fields for supporting toroidal plasmas
,”
Phys. Plasmas
23
,
032506
(
2016
).
21.
C.
Zhu
,
S. R.
Hudson
,
Y.
Song
, and
Y.
Wan
, “
Designing stellarator coils by a modified Newton method using FOCUS
,”
Plasma Phys. Controlled Fusion
60
,
065008
(
2018
).
22.
F.
Wechsung
,
M.
Landreman
,
A.
Giuliani
,
A.
Cerfon
, and
G.
Stadler
, “
Precise stellarator quasi-symmetry can be achieved with electromagnetic coils
,”
Proc. Natl. Acad. Sci.
119
,
e2202084119
(
2022
).
You do not currently have access to this content.