This paper extends the analysis first presented in Jardin et al. [Phys. Rev. Lett. 128, 245001 (2022)] to more thoroughly examine the stability of spherical torus equilibrium to ideal magnetohydrodynamic (MHD) infernal modes and their nonlinear consequences. We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation of a NSTX discharge, anomalous transport can occur due to these instabilities. We generate a family of equilibrium of differing β and use this to show that these instabilities could explain the experimentally observed flattening of the electron temperature profile at modest β. The modes studied in this paper are found to occur with poloidal mode number m and toroidal mode number n when the ratio m/n is in the range of 1.2–1.5, when the central safety factor is in this range or slightly lower, and when the central region has very low magnetic shear. Our analysis gives some insight as to why the unstable linear growth rates are oscillatory functions of the toroidal mode number n. We present a simulation of an initially stable configuration that passes through a stability boundary at a critical β as it is heated. We also show that a particular NSTX discharge is unstable to these modes over a timescale of several hundred ms. We conclude that these modes must be taken into account when performing predictive modeling. An appendix shows that similar modes can be found in R / a = 4 tokamaks for certain q-profiles and β values.

1.
S. C.
Jardin
,
N. M.
Ferraro
,
W.
Guttenfelder
,
S. M.
Kaye
, and
S.
Munaretto
,
Phys. Rev. Lett.
128
,
245001
(
2022
).
2.
M.
Ono
,
S. M.
Kaye
,
Y.-K. M.
Peng
,
G.
Barnes
,
W.
Blanchard
,
M. D.
Carter
,
J.
Chrzanowski
,
L.
Dudek
,
R.
Ewig
,
D.
Gates
et al,
Nucl. Fusion
40
,
557
(
2000
).
3.
J.
Manickam
,
N.
Pomphrey
, and
A.
Todd
,
Nucl. Fusion
27
,
1461
(
1987
).
4.
S. M.
Kaye
,
R. E.
Bell
,
D.
Gates
,
B. P.
LeBlanc
,
F. M.
Levinton
,
J. E.
Menard
,
D.
Mueller
,
G.
Rewoldt
,
S. A.
Sabbagh
,
W.
Wang
, and
H.
Yuh
,
Phys. Rev. Lett.
98
,
175002
(
2007
).
5.
S. M.
Kaye
,
F. M.
Levinton
,
D.
Stutman
,
K.
Tritz
,
H.
Yuh
,
M. G.
Bell
,
R. E.
Bell
,
C. W.
Domier
,
D.
Gates
,
W.
Horton
et al,
Nucl. Fusion
47
,
499
509
(
2007
).
6.
M.
Valovic
,
R.
Akers
,
G.
Cunningham
,
L.
Garzotti
,
R.
Lloyd
,
D.
Muir
,
A.
Patel
,
D.
Taylor
,
M.
Turnyanskiy
, and
M.
Walsh
,
Nucl. Fusion
49
,
075016
(
2009
).
7.
G. S.
Kurskiev
,
N. N.
Bakharev
,
V. V.
Bulanin
,
F. V.
Chernyshev
,
V. K.
Gusev
,
N. A.
Khromov
,
E. O.
Kiselev
,
V. B.
Minnaev
,
I. V.
Miroshnikov
,
E. E.
Mukhin
et al,
Nucl. Fusion
59
,
066032
(
2019
).
8.
G. S.
Kurskiev
,
V. K.
Gusev
,
N. V.
Sakharov
,
I. M.
Baiachenkov
,
E. O.
Kiselev
,
N. A.
Khromov
,
V. B.
Minaev
,
I. V.
Miroshnikov
,
M. I.
Patrov
,
A. V.
Petrov
et al,
Nucl. Fusion
61
,
064001
(
2021
).
9.
S. M.
Kaye
,
S.
Gerhardt
,
W.
Guttenfelder
,
R.
Maingi
,
R. E.
Bell
,
A.
Diallo
,
B. P.
LeBlanc
, and
M.
Podesta
,
Nucl. Fusion
53
,
063005
(
2013
).
10.
D.
Stutman
,
L.
Delgado-Aparicio
,
N.
Gorelenkov
,
M.
Finkenthal
,
E.
Fredrickson
,
S.
Kaye
,
E.
Mazzucato
, and
K.
Tritz
,
Phys. Rev. Lett.
102
,
115002
(
2009
).
11.
N.
Goreelenkov
,
D.
Stutman
,
R.
Tritz
,
A.
Boozer
,
L.
Delgado-Aparicio
,
E.
Fredrickson
,
S.
Kaye
, and
R.
White
,
Nucl. Fusion
50
,
084012
(
2010
).
12.
N.
Crocker
,
W. A.
Peebles
,
S.
Kubota
,
J.
Zhang
,
R. E.
Bell
,
E. D.
Fredrickson
,
N. N.
Gorelenkov
,
B. P.
LeBlanc
,
J. E.
Menard
,
M.
Podesta
et al,
Plasma Phys. Controlled Fusion
53
,
105001
(
2011
).
13.
N.
Crocker
,
E. D.
Fredrickson
,
N. N.
Gorelenkov
,
W. A.
Peebles
,
S.
Kubota
,
R. E.
Bell
,
A.
Diallo
,
B. P.
LeBlanc
,
J. E.
Menard
,
M.
Podesta
,
K.
Tritz
, and
H.
Yuh
,
Nucl. Fusion
53
,
043017
(
2013
).
14.
E. V.
Belova
,
N. N.
Gorelenkov
,
N. A.
Crocker
,
J. B.
Lestz
,
E. D.
Fredrickson
,
S.
Tang
, and
K.
Tritz
,
Phys. Plasmas
24
,
042505
(
2017
).
15.
N. A.
Crocker
,
S.
Kubota
,
W. A.
Peeebles
,
T. L.
Rhodes
,
E. D.
Fredrickson
,
E.
Belova
,
A.
Diallo
,
B. P.
LeBlanc
, and
S. A.
Sabbagh
,
Nucl. Fusion
58
,
016051
(
2018
).
16.
A. H.
Boozer
, “
The rapid destruction of toroidal magnetic surfaces
,”
Phys. Plasmas
29
,
022301
(
2022
).
17.
S. C.
Jardin
,
N.
Ferraro
,
J.
Breslau
, and
J.
Chen
,
Comput. Sci. Discovery
5
,
014002
(
2012
).
18.
I. B.
Bernstein
,
E. A.
Frieman
,
M. D.
Kruskal
, and
R. M.
Kulsrud
,
Proc. R. Soc. London, Ser. A
244
,
17
49
(
1958
).
19.
H. P.
Furth
,
J.
Killeen
,
M. N.
Rosenbluth
, and
B.
Coppi
,
CULHAM IAEA Conference
(
IAEA
,
1965
), Vol.
I
, pp.
103
126
.
20.
J. M.
Greene
and
J. L.
Johnson
,
Plasma Phys.
10
,
729
745
(
1968
).
22.
D.
Dobrott
,
D. B.
Nelson
,
J. M.
Greene
,
A. H.
Glasser
,
M. S.
Chance
, and
E. A.
Frieman
,
Phys. Rev. Lett.
39
,
943
(
1977
).
23.
J. W.
Connor
,
R. J.
Hastie
, and
J. B.
Taylor
,
Proc. R. Soc. London, Ser. A
365
,
1
17
(
1979
).
24.
R. C.
Grimm
,
J. M.
Greene
, and
J. L.
Johnson
, in
Controlled Fusion
, Methods in Computational Physics: Advances in Research and Applications, Volume
16
(
Academic Press
,
1976
), pp.
253
280
.
25.
L. C.
Bernard
,
F. J.
Helton
, and
R. W.
Moore
,
Comput. Phys. Commun.
24
,
377
(
1981
).
26.
J. P.
Freidberg
,
Ideal Magneto-Hydro-Dynamics
(
Plenum Press
,
New York
,
1987
).
27.
J. A.
Breslau
,
M. S.
Chance
,
J.
Chen
,
G. Y.
Fu
,
S.
Gerhardt
,
N.
Gorelenkov
,
S. C.
Jardin
, and
J.
Manickam
,
Nucl. Fusion
51
,
063027
(
2011
).
29.
R.
Dewar
,
J.
Manickam
,
R.
Grimm
, and
M.
Chance
,
Nucl. Fusion
21
,
493
(
1981
).
30.
L. A.
Charlton
,
B. A.
Carreras
, and
V. E.
Lynch
,
Phys. Fluids B
2
,
1574
(
1990
).
31.
J. D.
Huba
,
NRL Plasma Formulary
(
Naval Research Laboratory
,
2013
).
32.
L. D.
Landau
and
E. M.
Lifschitz
,
Fluid Mechanics
,
1st ed.
(
Pergamon Press
,
1959
), Vol.
6
.
33.
S. C.
Jardin
,
J. Comput. Phys.
200
,
133
152
(
2004
).
34.
G.
Bateman
and
M.
Peng
,
Phys. Rev. Lett.
38
,
829
(
1977
).
35.
β N = 2.9: NSTX shot 120 451@400 ms, β N = 3.6: NSTX shot 120 434@400 ms, β N = 4.3: NSTX shot 120 446@400 ms.
36.
I. T.
Chapman
,
W. A.
Cooper
,
J. P.
Graves
,
M. P.
Gryaznevich
,
R. J.
Hastie
,
T. C.
Hender
,
D. F.
Howell
,
M. D.
Hua
,
G. T.
Huysmans
,
D. I.
Keeling
et al,
Nucl. Fusion
51
,
073040
(
2011
).
37.
O. J.
Kwon
,
I. T.
Chapman
,
P.
Buratti
,
H.
Han
,
Y.
Na
, and
JET-EFDA Contributors,
Plasma Phys. Controlled Fusion
54
,
045010
(
2012
).
38.
L. A.
Charlton
,
L. R.
Baylor
,
A. W.
Edwards
,
G. W.
Hammett
,
W. A.
Houlberg
,
P.
Kupschus
,
V. E.
Lynch
,
S. L.
Milora
,
J.
O'Rourke
, and
G. L.
Schmidt
,
Nucl. Fusion
31
,
1835
(
1991
).
39.
Z.
Chang
,
E. D.
Fredrickson
,
J. D.
Callen
,
K. M.
McGuire
,
M. G.
Bell
,
R. V.
Budny
,
C. E.
Bush
,
D. S.
Darrow
,
A. C.
Janos
,
L. C.
Johnson
et al,
Nucl. Fusion
34
,
1309
(
1994
).
40.
T.
Ozeki
,
M.
Azumi
,
Y.
Kamada
,
S.
Ishida
,
Y.
Neyatani
, and
S.
Tokuda
,
Nucl. Fusion
35
,
861
(
1995
).
41.
A. D.
Turnbull
,
D. P.
Brennan
,
M. S.
Chu
,
L. L.
Lao
, and
P. B.
Snyder
,
Fusion Sci. Technol.
48
,
875
905
(
2005
).
42.
A.
Bierwage
,
M.
Toma
, and
K.
Shinohara
,
Plasma Phys. Controlled Fusion
59
,
125008
(
2017
).
43.
A.
Wright
and
N.
Ferraro
,
Phys. Plasmas
28
,
072511
(
2021
).
You do not currently have access to this content.