The eigen equation of pitch-angle distribution derived from the slowing-down distribution equation with an energetic particle source term is solved by using the Legendre series expansion method. An iteration matrix is established when pitch-angle scattering terms become important. The whole pitch-angle region is separated into three parts, two passing regions, and one trapped area. The slowing-down distribution for each region is finally obtained. The method is applied to solve the slowing-down equations with source terms that the pitch-angle distribution is Maxwellian-like, neutral beam injection, and radial drifts. The distribution functions are convergent for each source with different pitch-angle distribution. The method is suitable for solving a kinetic equation that pitch-angle scattering collision is important.

1.
J.
Wesson
,
Tokamaks
,
4th ed
. (
Oxford University Press
,
Oxford
,
2011
), pp.
772
783
.
2.
P. J.
Catto
,
J. Plasma Phys.
85
,
905850203
(
2019
).
3.
G. J.
Wilkie
,
I. G.
Abel
,
M.
Landreman
, and
W.
Dorland
,
Phys. Plasmas
23
,
060703
(
2016
).
4.
S. M.
Yang
,
C.
Angioni
,
T. S.
Hahm
,
D. H.
Na
, and
Y. S.
Na
,
Phys. Plasmas
25
,
122305
(
2018
).
5.
C.
Angioni
and
A. G.
Peeters
,
Phys. Plasmas
15
,
052307
(
2008
).
6.
E. A.
Tolman
and
P. J.
Catto
,
J. Plasma Phys.
87
,
855870201
(
2021
).
7.
K. C.
Shaing
and
C. T.
Hsu
,
Nucl. Fusion
54
,
033012
(
2014
).
8.
C. T.
Hsu
,
P. J.
Catto
, and
D. J.
Sigmar
,
Phys. Fluids B
2
,
280
(
1990
).
9.
V. S.
Marchenko
,
Nucl. Fusion
39
,
1541
(
1999
).
10.
J.
Cao
,
A.
Wang
,
X.
Gong
,
D.
Xiang
,
Q.
Huang
, and
J.
Yu
,
Phys. Plasmas
23
,
012301
(
2016
).
11.
J.
Zhao
,
J.
Cao
,
D.
Xiang
,
Y.
Dai
,
J.
Yang
, and
W.
Yang
,
Phys. Plasmas
29
,
082502
(
2022
).
13.
14.
J. D.
Gaffey
,
J. Plasma Phys.
16
,
149
169
(
1976
).
15.
D.
Moseev
and
M.
Salewski
,
Phys. Plasmas
26
,
020901
(
2019
).
16.
C. D.
Challis
,
J. G.
Cordey
,
H.
Hamnen
,
P. M.
Stubberfield
,
J. P.
Christiansen
,
E.
Lazzaro
,
D. G.
Muir
,
D.
Stork
, and
E.
Thompson
,
Nucl. Fusion
29
,
563
(
1989
).
17.
Y.
Zhong
,
Q.
Huang
,
X.
Gong
,
Q.
Tan
,
P.
Yu
,
G.
Yang
,
P.
Zheng
,
L.
Yin
,
T.
Yang
,
Z.
Wang
, and
M.
Xu
,
Nucl. Fusion
62
,
126027
(
2022
).
18.
K.
Tani
and
M.
Azumi
,
J. Comput. Phys.
98
,
332
341
(
1992
).
19.
H.
Jhang
,
Phys. Plasmas
28
,
094501
(
2021
).
20.
C.
Estrada-Mila
,
J.
Candy
, and
R. E.
Waltz
,
Phys. Plasmas
13
,
112303
(
2006
).
21.
R. D.
Hazeltine
and
J. D.
Meiss
,
Plasma Confinement
(
Addison–Wesley
,
New York
,
1992
), p.
160
.
22.
K.
Tani
and
M.
Azumi
,
Nucl. Fusion
48
,
085001
(
2008
).
23.
M.
Taguchi
,
J. Phys. Soc. Jpn.
61
,
4443
(
1992
).
24.
H.
Jhang
and
C. S.
Chang
,
Phys. Plasmas
3
,
3732
(
1996
).
25.
A.
Croitoru
,
D. I.
Palade
,
M.
Vlad
, and
F.
Spineanu
,
Nucl. Fusion
57
,
036019
(
2017
).
26.
R. D.
Hazeltine
and
J. D.
Meiss
,
Plasma Confinement
(
Addison–Wesley
,
New York
,
1992
), p.
168
.
27.
E.
Hirvijoki
,
O.
Asunta
,
T.
Koskela
,
T.
Kurki-Suonio
,
J.
Miettunen
,
S.
Sipilä
,
A.
Snicker
, and
S.
Äkäslompolo
,
Comput. Phys. Commun.
185
,
1310
(
2014
).
28.
C. F.
Clauser
,
R.
Farengo
, and
H. E.
Ferrari
,
Comput. Phys. Commun.
234
,
126
(
2019
).
29.
F.
Wang
,
R.
Zhao
,
Z. X.
Wang
,
Y.
Zhang
,
Z. H.
Lin
,
S. J.
Liu
, and
CFETR Team
,
Chin. Phys. Lett.
38
,
055201
(
2021
).
30.
G. J.
Kramer
,
R. V.
Budny
,
A.
Bortolon
,
E. D.
Fredrickson
,
G. Y.
Fu
,
W. W.
Heidbrink
,
R.
Nazikian
,
E.
Valeo
, and
M. A.
Van Zeeland
,
Plasma Phys. Controlled Fusion
55
,
025013
(
2013
).
You do not currently have access to this content.