It is believed that isolated defects within the capsule (e.g., void, high-density inclusion) can be one of the essential factors for implosion performance degradation by seeding hydrodynamic instabilities in implosions. Nonetheless, a systematic study on how the isolated defects evolve and why they are not stabilized by ablation given the length scale comparable with the typical cutoff wavelength is still lacking. This paper addresses the above concerns by looking into a simplified model where a planar shell (without convergent geometry) is driven by laser direct-drive, with a single defect (low/high density) of micrometer or sub-micrometer scale residing at different locations inside. The underlying dynamics of two key physical processes are analyzed, i.e., the shock–bubble interactions as well as the subsequent nonlinear evolution of ablative hydrodynamic instabilities initiated by the direct interaction of the deformed defect and ablation front, revealing that compressibility and baroclinic effects drive vorticity production during the interactions between the shock wave and the isolated defect. In the “light-bubble” case, the vortex pair generated in the first process is further strengthened by the laser ablation. Hence, a directed flow is formed in companion with the persistent flow entering the bubble of the surrounding ablator. The bubble exhibits a remarkable growth both laterally and deeply, seriously threatening the shell's integrity. The positive feedback mechanism of the vortex pair is absent in the “heavy-bubble” counterpart, and the ablation stabilization manifested itself in the reduction of spike amplitude. A systematic study of localized perturbation growth as a function of defect placement, size, and preheating intensity is presented.

1.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Mater
(
Oxford University
,
Oxford
,
2004
).
2.
R.
Betti
and
O. A.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nat. Phys.
12
,
435
(
2016
).
3.
X. T.
He
and
W. Y.
Zhang
, “
Inertial fusion research in China
,”
Eur. Phys. J. D
44
,
227
(
2007
).
4.
L.
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
(
1882
).
5.
G. I.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
,”
Proc. R. Soc. A
201
,
192
(
1950
).
6.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
319
(
1960
).
7.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1969
).
8.
S. W.
Haan
, “
Weakly nonlinear hydrodynamic instabilities in inertial fusion
,”
Phys. Fluid B
3
,
2349
(
1991
).
9.
R.
Betti
and
J.
Sanz
, “
Bubble acceleration in the ablative Rayleigh-Taylor instability
,”
Phys. Rev. Lett.
97
,
205002
(
2006
).
10.
V. A.
Smalyuk
,
O.
Sadot
,
J. A.
Delettrez
,
D. D.
Meyerhofer
,
S. P.
Regan
, and
T. C.
Sangster
, “
Fourier-space nonlinear Rayleigh-Taylor growth measurements of 3D laser-imprinted modulations in planar targets
,”
Phys. Rev. Lett.
95
,
215001
(
2005
).
11.
V. A.
Smalyuk
,
O.
Sadot
,
R.
Betti
,
V. N.
Goncharov
,
J. A.
Delettrez
,
D. D.
Meyerhofer
,
S. P.
Regan
,
T. C.
Sangster
, and
D.
Shvarts
, “
Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime
,”
Phys. Plasmas
13
,
056312
(
2006
).
12.
K.
Lan
, “
Dream fusion in octahedral spherical hohlraum
,”
Matter Radiat. Extremes
7
,
055701
(
2022
).
13.
Y.
Aglitskiy
,
A. L.
Velikovich
,
M.
Karasik
,
V.
Serlin
,
C. J.
Pawley
,
A. J.
Schmitt
,
S. P.
Obenschain
,
A. N.
Mostovych
,
J. H.
Gardner
, and
N.
Metzler
, “
Direct observation of feedout-related mass oscillations in plastic targets
,”
Phys. Rev. Lett.
87
,
265002
(
2001
).
14.
P.
Ramaprabhu
,
G.
Dimonte
, and
M. J.
Andrews
, “
A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability
,”
J. Fluid Mech.
536
,
285
(
2005
).
15.
L. F.
Wang
,
W. H.
Ye
,
X. T.
He
,
J. F.
Wu
,
Z. F.
Fan
,
C.
Xue
,
H. Y.
Guo
,
W. Y.
Miao
,
Y. T.
Yuan
,
J. Q.
Dong
,
G.
Jia
,
J.
Zhang
,
Y. J.
Li
,
J.
Liu
,
M.
Wang
,
Y. K.
Ding
, and
W. Y.
Zhang
, “
Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions
,”
Sci. China
60
,
055201
(
2017
).
16.
D. J.
Zhang
,
A. G.
Xu
,
Y. D.
Zhang
,
Y. B.
Gan
, and
Y. J.
Li
, “
Discrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium
,”
Phys. Fluids
34
,
086104
(
2022
).
17.
J.
Li
,
R.
Yan
,
B.
Zhao
,
J.
Zheng
,
H. S.
Zhang
, and
X. Y.
Lu
, “
Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport
,”
Matter Radiat. Extremes
7
,
055902
(
2022
).
18.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723-725
,
1
160
(
2017
).
19.
D.
Ranjan
,
J.
Oakley
, and
R.
Bonazza
, “
Shock-bubble interactions
,”
Annu. Rev. Fluid Mech.
43
,
117
(
2011
).
20.
J.
Picone
and
J.
Boris
, “
Vorticity generation by shock propagation through bubbles in a gas
,”
J. Fluid Mech.
189
,
23
(
1988
).
21.
J.
Yang
,
T.
Kubota
, and
E. E.
Zukoski
, “
A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity
,”
J. Fluid Mech.
258
,
217
(
1994
).
22.
R.
Samtaney
and
N. J.
Zabusky
, “
Circulation deposition on shock-accelerated planar and curved density stratified interfaces: Models and scaling laws
,”
J. Fluid Mech.
269
,
45
(
1994
).
23.
R. I.
Klein
,
C. F.
McKee
, and
P.
Colella
, “
On the hydrodynamic interaction of shock waves with interstellar clouds. I. Nonradiative shocks in small clouds
,”
Astrophys. J.
420
,
213
(
1994
).
24.
D.
Ranjan
,
M.
Anderson
,
J.
Oakley
, and
R.
Bonazza
, “
Experimental investigation of a strongly shocked gas bubble
,”
Phys. Rev. Lett.
94
,
184507
(
2005
).
25.
D.
Ranjan
,
J.
Niederhaus
,
B.
Motl
,
M.
Anderson
,
J.
Oakley
, and
R.
Bonazza
, “
Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction
,”
Phys. Rev. Lett.
98
,
024502
(
2007
).
26.
J. H.
Niederhaus
,
J.
Greenough
,
J.
Oakley
,
D.
Ranjan
,
M.
Anderson
, and
R.
Bonazza
, “
A computational parameter study for the three-dimensional shock-bubble interaction
,”
J. Fluid Mech.
594
,
85
(
2008
).
27.
B.
Yu
,
H. Y.
Liu
, and
H.
Liu
, “
Scaling behavior of density gradient accelerated mixing rate in shock bubble interaction
,”
Phys. Rev. Fluids
6
,
064502
(
2021
).
28.
D. R.
Harding
,
M. J.
Bonino
,
W.
Sweet
,
M.
Schoff
,
A.
Greenwood
,
N.
Satoh
,
M.
Takagi
, and
A.
Nikroo
, “
Properties of vapor-deposited and solution-processed targets for laser-driven inertial confinement fusion experiments
,”
Matter Radiat. Extremes
3
,
312
(
2018
).
29.
C.
Zulick
,
Y.
Aglitskiy
,
M.
Karasik
,
A. J.
Schmitt
,
A. L.
Velikovich
, and
S. P.
Obenschain
, “
Multimode hydrodynamic instability growth of preimposed isolated defects in ablatively driven foils
,”
Phys. Rev. Lett.
125
,
055001
(
2020
).
30.
A. L.
Velikovich
,
A. J.
Schmitt
,
C.
Zulick
,
Y.
Aglitskiy
,
M.
Karasik
,
S. P.
Obenschain
,
J. G.
Wouchuk
, and
F. C.
Campos
, “
Multi-mode hydrodynamic evolution of perturbations seeded by isolated surface defects
,”
Phys. Plasmas
27
,
102706
(
2020
).
31.
C.
Zulick
,
Y.
Aglitskiy
,
M.
Karasik
,
A. J.
Schmitt
,
A. L.
Velikovich
, and
S. P.
Obenschain
, “
Isolated defect evolution in laser accelerated targets
,”
Phys. Plasmas
27
,
072706
(
2020
).
32.
H. F.
Robey
,
T. S.
Perry
,
R. I.
Klein
,
J. O.
Kane
,
J. A.
Greenough
, and
T. R.
Boehly
, “
Experimental investigation of the three-dimensional interaction of a strong shock with a spherical density inhomogeneity
,”
Phys. Rev. Lett.
89
,
085001
(
2007
).
33.
I. V.
Igumenshchev
,
V. N.
Goncharov
,
W. T.
Shmayda
,
D. R.
Harding
,
T. C.
Sangster
, and
D. D.
Meyerhofer
, “
Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
,”
Phys. Plasmas
20
,
082703
(
2013
).
34.
B. M.
Haines
,
J. P.
Sauppe
,
B. J.
Albright
,
W. S.
Daughton
,
S. M.
Finnegan
,
J. L.
Kline
, and
J. M.
Smidt
, “
A mechanism for reduced compression in indirectly driven layered capsule implosions
,”
Phys. Plasmas
29
,
042704
(
2022
).
35.
S. C.
Miller
and
V. N.
Goncharov
, “
Instability seeding mechanisms due to internal defects in inertial confinement fusion targets
,”
Phys. Plasmas
29
,
082701
(
2022
).
36.
A. B.
Zylstra
,
D. T.
Casey
,
A.
Kritcher
,
L.
Pickworth
,
B.
Bachmann
,
K.
Baker
,
J.
Biener
,
T.
Braun
,
D.
Clark
,
V.
Geppert-Kleinrath
,
M.
Hohenberger
,
C.
Kong
,
S. L.
Pape
,
A.
Nikroo
,
N.
Rice
,
M.
Rubery
,
M.
Stadermann
,
D.
Strozzi
,
C.
Thomas
,
P.
Volegov
,
C.
Weber
,
C.
Wild
,
C.
Wilde
,
D. A.
Callahan
, and
O. A.
Hurricane
, “
Hot-spot mix in large-scale HDC implosions at NIF
,”
Phys. Plasmas
27
,
092709
(
2020
).
37.
I. V.
Igumenshchev
,
F. J.
Marshall
,
J. A.
Marozas
,
V. A.
Smalyuk
,
R.
Epstein
,
V. N.
Goncharov
,
T. J. B.
Collins
,
T. C.
Sangster
, and
S.
Skupsky
, “
The effects of target mounts in direct-drive implosions on OMEGA
,”
Phys. Plasmas
16
,
082701
(
2009
).
38.
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B. B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
et al, “
Lawson criterion for ignition exceeded in an inertial fusion experiment
,”
Phys. Rev. Lett.
129
,
075001
(
2022
).
39.
A. B.
Zylstra
,
A. L.
Kritcher
,
O. A.
Hurricane
,
D. A.
Callahan
,
J. E.
Ralph
,
D. T.
Casey
,
A.
Pak
,
O. L.
Landen
,
B.
Bachmann
,
K. L.
Baker
et al, “
Experimental achievement and signatures of ignition at the National Ignition Facility
,”
Phys. Rev. E
106
,
025202
(
2022
).
40.
A. L.
Kritcher
,
A. B.
Zylstra
,
D. A.
Callahan
,
O. A.
Hurricane
,
C. R.
Weber
,
D. S.
Clark
,
C. V.
Young
,
J. E.
Ralph
,
D. T.
Casey
,
A.
Pak
et al, “
Design of an inertial fusion experiment exceeding the Lawson criterion for ignition
,”
Phys. Rev. E
106
,
025201
(
2022
).
41.
L. F.
Wang
,
J. F.
Wu
,
W. H.
Ye
,
J. Q.
Dong
,
Z. H.
Fang
,
G.
Jia
,
Z. Y.
Xie
,
X. G.
Huang
,
S. Z.
Fu
,
S. Y.
Zou
,
Y. K.
Ding
,
W. Y.
Zhang
, and
X. T.
He
, “
Nonlinear ablative Rayleigh-Taylor growth experiments on Shenguang-II
,”
Phys. Plasmas
27
,
072703
(
2020
).
42.
Z. Y.
Li
,
L. F.
Wang
,
J. F.
Wu
, and
W. H.
Ye
, “
Numerical study on the laser ablative Rayleigh-Taylor instability
,”
Acta Mech. Sin.
36
,
789
(
2020
).
43.
M. H.
Emery
,
J. H.
Orens
,
J. H.
Gardner
, and
J. P.
Boris
, “
Influence of nonuniform laser intensities on ablatively accelerated targets
,”
Phys. Rev. Lett.
48
,
253
(
1982
).
44.
J. P.
Dahlburg
,
J. H.
Gardner
,
M. H.
Emery
, and
J. P.
Boris
, “
Hydrodynamic evolution of the split-foil laser target
,”
Phys. Rev. A
35
,
2737
(
1987
).
45.
J. G.
Clérouin
,
M. H.
Cherfi
, and
G.
Zérah
, “
The viscosity of dense plasmas mixtures
,”
Europhys. Lett.
42
,
37
(
1998
).
46.
H. F.
Robey
,
Y.
Zhou
,
A. C.
Buckingham
,
P.
Keiter
,
B. A.
Remington
, and
R. P.
Drake
, “
The time scale for the transition to turbulence in a high Reynolds number, accelerated flow
,”
Phys. Plasmas
10
,
614
(
2003
).
47.
S. I.
Braginskii
, in
Reviews of Plasma Physics
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
, p.
205
.
48.
B.
Einfeldt
,
C. D.
Munz
,
P. L.
Roe
, and
B.
Sjögreen
, “
On Godunov-type methods for gas dynamics
,”
J. Comput. Phys.
92
(
2
),
273
(
1991
).
49.
L.
Spitzer
and
R.
Härm
, “
Transport phenomena in a completely ionized gas
,”
Phys. Rev.
89
,
977
(
1953
).
50.
R. D.
Falgout
,
J. E.
Jones
, and
U. M.
Yang
,
Solution of Partial Differential Equations on Parallel Computers
(
Springer
,
Berlin
,
2006
).
51.
B. V.
Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
,”
J. Comput. Phys.
32
,
101
(
1979
).
52.
W. H.
Ye
,
W. Y.
Zhang
, and
X. T.
He
, “
Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number
,”
Phys. Rev. E
65
,
057401
(
2002
).
53.
D.
Ranjan
,
J.
Niederhaus
,
G.
Oakley
,
H.
Anderson
,
R.
Bonazza
, and
A.
Greenough
, “
Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations
,”
Phys. Fluids
20
,
036101
(
2008
).
54.
F.
Diegelmanna
,
S.
Hickel
, and
A.
Adams
, “
Three-dimensional reacting shock-bubble interaction
,”
Combust. Flame
181
,
300
314
(
2017
).
55.
B.
Hejazialhosseini
,
D.
Rossinelli
, and
P.
Koumoutsakos
, “
Vortex dynamics in 3D shock-bubble interaction
,”
Phys. Fluids
25
,
110816
(
2013
).
56.
B. D.
Collins
and
J. W.
Jacobs
, “
PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/ S F 6 interface
,”
J. Fluid Mech.
464
,
113
(
2002
).
57.
K. H.
Winkler
,
J. W.
Chalmers
,
S. W.
Hodson
,
P. R.
Woodward
, and
N. J.
Zabusky
, “
A numerical laboratory
,”
Phys. Today
40(
10
),
28
37
(
1987
).
58.
W. H.
Ye
,
L. F.
Wang
, and
X. T.
He
, “
Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability
,”
Phys. Plasmas
17
,
122704
(
2010
).
You do not currently have access to this content.