We review the current literature on the formation of coherent structures (CoSs) in strongly turbulent 3D magnetized plasmas. CoSs [Current Sheets (CS), magnetic filaments, large amplitude magnetic disturbances, vortices, and shocklets] appear intermittently inside a turbulent plasma and are collectively the locus of magnetic energy transfer (dissipation) into particle kinetic energy, leading to heating and/or acceleration of the latter. CoSs and especially CSs are also evolving and fragmenting, becoming locally the source of new clusters of CoSs. Strong turbulence can be generated by the nonlinear coupling of large amplitude unstable plasma modes, by the explosive reorganization of large-scale magnetic fields, or by the fragmentation of CoSs. A small fraction of CSs inside a strongly turbulent plasma will end up reconnecting. Magnetic Reconnection (MR) is one of the potential forms of energy dissipation of a turbulent plasma. Analyzing the evolution of CSs and MR in isolation from the surrounding CoSs and plasma flows may be convenient for 2D numerical studies, but it is far from a realistic modeling of 3D astrophysical, space, and laboratory environments, where strong turbulence can be exited, such as in the solar wind, the solar atmosphere, solar flares and Coronal Mass Ejections, large-scale space and astrophysical shocks, the magnetosheath, the magnetotail, astrophysical jets, and Edge Localized Modes in confined laboratory plasmas (tokamaks).

1.
U.
Frisch
,
Turbulence
(
Cambridge University Press
,
1995
).
2.
D.
Biskamp
,
Magnetohydrodynamic Turbulence
(
Cambridge University Press
,
2003
).
3.
W. H.
Matthaeus
, “
Turbulence in space plasmas: Who needs it?
,”
Phys. Plasmas
28
,
032306
(
2021
).
4.
A. A.
Vedenov
, “
Quasi-linear plasma theory (theory of a weakly turbulent plasma)
,”
J. Nucl. Energy
5
,
169
186
(
1963
).
5.
S.
Galtier
, “
Wave turbulence in magnetized plasmas
,”
Nonlinear Processes Geophys.
16
,
83
98
(
2009
).
6.
P.
Goldreich
and
S.
Sridhar
, “
Toward a theory of interstellar turbulence—II: Strong Alfvenic turbulence
,”
Astrophys. J.
438
,
763
(
1995
).
7.
J. C.
Perez
and
S.
Boldyrev
, “
On weak and strong magnetohydrodynamic turbulence
,”
Astrophys. J. Lett.
672
,
L61
(
2008
).
8.
L.
Vlahos
and
H.
Isliker
, “
Particle acceleration and heating in a turbulent solar corona
,”
Plasma Phys. Controlled Fusion
61
,
014020
(
2019
).
9.
M.
Wan
,
W. H.
Matthaeus
,
V.
Roytershteyn
,
T. N.
Parashar
,
P.
Wu
, and
H.
Karimabadi
, “
Intermittency, coherent structures and dissipation in plasma turbulence
,”
Phys. Plasmas
23
,
042307
(
2016
).
10.
O.
Pezzi
,
H.
Liang
,
J. L.
Juno
,
P. A.
Cassak
,
C. L.
Vásconez
,
L.
Sorriso-Valvo
,
D.
Perrone
,
S.
Servidio
,
V.
Roytershteyn
,
J. M.
TenBarge
, and
W. H.
Matthaeus
, “
Dissipation measures in weakly collisional plasmas
,”
Mon. Not. R. Astron. Soc.
505
,
4857
4873
(
2021
).
11.
H.
Karimabadi
,
V.
Roytershteyn
,
M.
Wan
,
W. H.
Matthaeus
,
W.
Daughton
,
P.
Wu
,
M.
Shay
,
B.
Loring
,
J.
Borovsky
,
E.
Leonardis
,
S. C.
Chapman
, and
T. K. M.
Nakamura
, “
Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas
,”
Phys. Plasmas
20
,
012303
(
2013
).
12.
N.
Sioulas
,
H.
Isliker
, and
L.
Vlahos
, “
Particle heating and acceleration by reconnecting and nonreconnecting current sheets
,”
Astron. Astrophys.
657
,
A8
(
2022
).
13.
V.
Carbone
,
P.
Veltri
, and
A.
Mangeney
, “
Coherent structure formation and magnetic field line reconnection in magnetohydrodynamic turbulence
,”
Phys. Fluids A
2
,
1487
1496
(
1990
).
14.
B. T.
Tsurutani
and
E. J.
Smith
, “
Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU
,”
J. Geophys. Res.
84
,
2773
2787
, https://doi.org/10.1029/JA084iA06p02773 (
1979
).
15.
M.
Neugebauer
,
D. R.
Clay
,
B. E.
Goldstein
,
B. T.
Tsurutani
, and
R. D.
Zwickl
, “
A reexamination of rotational and tangential discontinuities in the solar wind
,”
J. Geophys. Res.
89
,
5395
5408
, https://doi.org/10.1029/JA089iA07p05395 (
1984
).
16.
E. N.
Parker
, “
Sweet's mechanism for merging magnetic fields in conducting fluids
,”
J. Geophys. Res.
62
,
509
520
, https://doi.org/10.1029/JZ062i004p00509 (
1957
).
17.
H. E.
Petschek
,
Magnetic Field Annihilation
(
NASA Special Publication
,
1964
), Vol.
50
, p.
425
.
18.
E. G.
Zweibel
and
M.
Yamada
, “
Perspectives on magnetic reconnection
,”
Proc. R. Soc. London Ser. A
472
,
20160479
(
2016
).
19.
N. F.
Loureiro
and
D. A.
Uzdensky
, “
Magnetic reconnection: From the Sweet-Parker model to stochastic plasmoid chains
,”
Plasma Phys. Controlled Fusion
58
,
014021
(
2016
).
20.
M.
Hesse
and
P. A.
Cassak
, “
Magnetic reconnection in the space sciences: Past, present, and future
,”
J. Geophys. Res.
125
,
e25935
, https://doi.org/10.1029/2019JA025935 (
2020
).
21.
A.
Lazarian
and
E. T.
Vishniac
, “
Reconnection in a weakly stochastic field
,”
Astrophys. J.
517
,
700
718
(
1999
).
22.
G.
Kowal
,
A.
Lazarian
,
E. T.
Vishniac
, and
K.
Otmianowska-Mazur
, “
Numerical tests of fast reconnection in weakly stochastic magnetic fields
,”
Astrophys. J.
700
,
63
85
(
2009
).
23.
E. T.
Vishniac
,
S.
Pillsworth
,
G.
Eyink
,
G.
Kowal
,
A.
Lazarian
, and
S.
Murray
, “
Reconnection current sheet structure in a turbulent medium
,”
Nonlinear Processes Geophys.
19
,
605
610
(
2012
).
24.
G.
Kowal
,
A.
Lazarian
,
E. T.
Vishniac
, and
K.
Otmianowska-Mazur
, “
Reconnection studies under different types of turbulence driving
,”
Nonlinear Processes Geophys.
19
,
297
314
(
2012
).
25.
L.
Comisso
,
D.
Grasso
, and
F. L.
Waelbroeck
, “
Extended theory of the Taylor problem in the plasmoid-unstable regime
,”
Phys. Plasmas
22
,
042109
(
2015
).
26.
S.
Servidio
,
W. H.
Matthaeus
,
M. A.
Shay
,
P. A.
Cassak
, and
P.
Dmitruk
, “
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence
,”
Phys. Rev. Lett.
102
,
115003
(
2009
).
27.
P. D.
Mininni
,
A.
Alexakis
, and
A.
Pouquet
, “
Energy transfer in Hall-MHD turbulence: Cascades, backscatter, and dynamo action
,”
J. Plasma Phys.
73
,
377
401
(
2007
).
28.
B.
Coppi
,
G.
Laval
, and
R.
Pellat
, “
Dynamics of the geomagnetic tail
,”
Phys. Rev. Lett.
16
,
1207
1210
(
1966
).
29.
W. H.
Matthaeus
and
S. L.
Lamkin
, “
Turbulent magnetic reconnection
,”
Phys. Fluids
29
,
2513
2534
(
1986
).
30.
J. F.
Drake
,
M.
Swisdak
,
H.
Che
, and
M. A.
Shay
, “
Electron acceleration from contracting magnetic islands during reconnection
,”
Nature
443
,
553
556
(
2006
).
31.
M.
Hoshino
and
Y.
Lyubarsky
, “
Relativistic reconnection and particle acceleration
,”
Space Sci. Rev.
173
,
521
533
(
2012
).
32.
S.
Adhikari
,
M. A.
Shay
,
T. N.
Parashar
,
P. S.
Pyakurel
,
W. H.
Matthaeus
,
D.
Godzieba
,
J. E.
Stawarz
,
J. P.
Eastwood
, and
J. T.
Dahlin
, “
Reconnection from a turbulence perspective
,”
Phys. Plasmas
27
,
042305
(
2020
).
33.
D.
Biskamp
and
H.
Welter
, “
Dynamics of decaying two-dimensional magnetohydrodynamic turbulence
,”
Phys. Fluids B
1
,
1964
1979
(
1989
).
34.
W. H.
Matthaeus
and
M.
Velli
, “
Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection
,”
Space Sci. Rev.
160
,
145
168
(
2011
).
35.
P.
Cargill
,
L.
Vlahos
,
G.
Baumann
,
J.
Drake
, and
Å.
Nordlund
, “
Current fragmentation and particle acceleration in solar flares
,”
Space Sci. Rev.
173
,
223
245
(
2012
).
36.
A.
Lazarian
,
L.
Vlahos
,
G.
Kowal
,
H.
Yan
,
A.
Beresnyak
, and
E. M.
de Gouveia Dal Pino
, “
Turbulence, magnetic reconnection in turbulent fluids and energetic particle acceleration
,”
Space Sci. Rev.
173
,
557
622
(
2012
).
37.
H.
Karimabadi
,
V.
Roytershteyn
,
H. X.
Vu
,
Y. A.
Omelchenko
,
J.
Scudder
,
W.
Daughton
,
A.
Dimmock
,
K.
Nykyri
,
M.
Wan
,
D.
Sibeck
,
M.
Tatineni
,
A.
Majumdar
,
B.
Loring
, and
B.
Geveci
, “
The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas
,”
Phys. Plasmas
21
,
062308
(
2014
).
38.
E. N.
Parker
, “
Magnetic neutral sheets in evolving fields—I: General theory
,”
Astrophys. J.
264
,
635
647
(
1983
).
39.
E. N.
Parker
, “
Nanoflares and the solar X-ray corona
,”
Astrophys. J.
330
,
474
479
(
1988
).
40.
K.
Galsgaard
and
Å.
Nordlund
, “
Heating and activity of the solar corona—1: Boundary shearing of an initially homogeneous magnetic field
,”
J. Geophys. Res.
101
,
13445
13460
, https://doi.org/10.1029/96JA00428 (
1996
).
41.
K.
Galsgaard
and
Å.
Nordlund
, “
Heating and activity of the solar corona—2: Kink instability in a flux tube
,”
J. Geophys. Res.
102
,
219
230
, https://doi.org/10.1029/96JA01462 (
1997
).
42.
K.
Galsgaard
and
Å.
Nordlund
, “
Heating and activity of the solar corona—3: Dynamics of a low beta plasma with three-dimensional null points
,”
J. Geophys. Res.
102
,
231
248
, https://doi.org/10.1029/96JA02680 (
1997
).
43.
G.
Einaudi
,
R. B.
Dahlburg
,
I.
Ugarte-Urra
,
J. W.
Reep
,
A. F.
Rappazzo
, and
M.
Velli
, “
Energetics and 3D structure of elementary events in solar coronal heating
,”
Astrophys. J.
910
,
84
(
2021
).
44.
P.
Dmitruk
,
W.
Matthaeus
,
N.
Seenu
, and
M. R.
Brown
, “
Test particle acceleration in three-dimensional magnetohydrodynamic turbulence
,”
Astrophys. J. Lett.
597
,
L81
(
2003
).
45.
K.
Arzner
,
B.
Knaepen
,
D.
Carati
,
N.
Denewet
, and
L.
Vlahos
, “
The effect of coherent structures on stochastic acceleration in MHD turbulence
,”
Astrophys. J.
637
,
322
332
(
2006
).
46.
S.
Servidio
,
W. H.
Matthaeus
,
M. A.
Shay
,
P.
Dmitruk
,
P. A.
Cassak
, and
M.
Wan
, “
Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence
,”
Phys. Plasmas
17
,
032315
(
2010
).
47.
S.
Servidio
,
P.
Dmitruk
,
A.
Greco
,
M.
Wan
,
S.
Donato
,
P. A.
Cassak
,
M. A.
Shay
,
V.
Carbone
, and
W. H.
Matthaeus
, “
Magnetic reconnection as an element of turbulence
,”
Nonlinear Processes Geophys.
18
,
675
695
(
2011
).
48.
V.
Zhdankin
,
D. A.
Uzdensky
,
J. C.
Perez
, and
S.
Boldyrev
, “
Statistical analysis of current sheets in three-dimensional magnetohydrodynamic turbulence
,”
Astrophys. J.
771
,
124
(
2013
).
49.
F.
Valentini
,
S.
Servidio
,
D.
Perrone
,
F.
Califano
,
W. H.
Matthaeus
, and
P.
Veltri
, “
Hybrid Vlasov-Maxwell simulations of two-dimensional turbulence in plasmas
,”
Phys. Plasmas
21
,
082307
(
2014
).
50.
S. S.
Cerri
and
F.
Califano
, “
Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations
,”
New J. Phys.
19
,
025007
(
2017
).
51.
H.
Isliker
,
L.
Vlahos
, and
D.
Constantinescu
, “
Fractional transport in strongly turbulent plasmas
,”
Phys. Rev. Lett.
119
,
045101
(
2017
).
52.
L.
Comisso
and
L.
Sironi
, “
The interplay of magnetically dominated turbulence and magnetic reconnection in producing nonthermal particles
,”
Astrophys. J.
886
,
122
(
2019
).
53.
J. A.
Agudelo Rueda
,
D.
Verscharen
,
R. T.
Wicks
,
C. J.
Owen
,
G.
Nicolaou
,
A. P.
Walsh
,
I.
Zouganelis
,
K.
Germaschewski
, and
S.
Vargas Domínguez
, “
Three-dimensional magnetic reconnection in particle-in-cell simulations of anisotropic plasma turbulence
,”
J. Plasma Phys.
87
,
905870228
(
2021
).
54.
P.
Dmitruk
,
W. H.
Matthaeus
, and
N.
Seenu
, “
Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence
,”
Astrophys. J.
617
,
667
679
(
2004
).
55.
K.
Arzner
and
L.
Vlahos
, “
Particle acceleration in multiple dissipation regions
,”
Astrophys. J. Lett.
605
,
L69
(
2004
).
56.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Courier Corporation
,
2001
).
57.
S.
Gottlieb
and
C. W.
Shu
, “
Total variation diminishing Runge-Kutta schemes
,”
Math. Comput.
67
,
73
85
(
1998
).
58.
A.
Greco
,
W. H.
Matthaeus
,
S.
Servidio
,
P.
Chuychai
, and
P.
Dmitruk
, “
Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence
,”
Astrophys. J. Lett.
691
,
L111
L114
(
2009
).
59.
V. M.
Uritsky
,
A.
Pouquet
,
D.
Rosenberg
,
P. D.
Mininni
, and
E. F.
Donovan
, “
Structures in magnetohydrodynamic turbulence: Detection and scaling
,”
Phys. Rev. E
82
,
056326
(
2010
).
60.
C.
Rossi
,
F.
Califano
,
A.
Retinò
,
L.
Sorriso-Valvo
,
P.
Henri
,
S.
Servidio
,
F.
Valentini
,
A.
Chasapis
, and
L.
Rezeau
, “
Two-fluid numerical simulations of turbulence inside Kelvin-Helmholtz vortices: Intermittency and reconnecting current sheets
,”
Phys. Plasmas
22
,
122303
(
2015
).
61.
E.
De Giorgio
,
S.
Servidio
, and
P.
Veltri
, “
Coherent structure formation through nonlinear interactions in 2D magnetohydrodynamic turbulence
,”
Sci. Rep.
7
,
13849
(
2017
).
62.
S.
Fadanelli
,
B.
Lavraud
,
F.
Califano
,
C.
Jacquey
,
Y.
Vernisse
,
I.
Kacem
,
E.
Penou
,
D. J.
Gershman
,
J.
Dorelli
,
C.
Pollock
,
B. L.
Giles
,
L. A.
Avanov
,
J.
Burch
,
M. O.
Chandler
,
V. N.
Coffey
,
J. P.
Eastwood
,
R.
Ergun
,
C. J.
Farrugia
,
S. A.
Fuselier
,
V. N.
Genot
,
E.
Grigorenko
,
H.
Hasegawa
,
Y.
Khotyaintsev
,
O.
Le Contel
,
A.
Marchaudon
,
T. E.
Moore
,
R.
Nakamura
,
W. R.
Paterson
,
T.
Phan
,
A. C.
Rager
,
C. T.
Russell
,
Y.
Saito
,
J. A.
Sauvaud
,
C.
Schiff
,
S. E.
Smith
,
S.
Toledo Redondo
,
R. B.
Torbert
,
S.
Wang
, and
S.
Yokota
, “
Four-spacecraft measurements of the shape and dimensionality of magnetic structures in the near-Earth plasma environment
,”
J. Geophys. Res.
124
,
6850
6868
, https://doi.org/10.1029/2019JA026747 (
2019
).
63.
D.
Perrone
,
R.
Bruno
,
R.
D'Amicis
,
D.
Telloni
,
R. D.
Marco
,
M.
Stangalini
,
S.
Perri
,
O.
Pezzi
,
O.
Alexandrova
, and
S. D.
Bale
, “
Coherent events at ion scales in the inner heliosphere: Parker solar probe observations during the first encounter
,”
Astrophys. J.
905
,
142
(
2020
).
64.
M.
Sisti
,
S.
Fadanelli
,
S. S.
Cerri
,
M.
Faganello
,
F.
Califano
, and
O.
Agullo
, “
Characterizing current structures in 3D hybrid-kinetic simulations of plasma turbulence
,”
Astron. Astrophys.
655
,
A107
(
2021
).
65.
N.
Sioulas
,
M.
Velli
,
R.
Chhiber
,
L.
Vlahos
,
W. H.
Matthaeus
,
R.
Bandyopadhyay
,
M. E.
Cuesta
,
C.
Shi
,
T. A.
Bowen
,
R. A.
Qudsi
,
M. L.
Stevens
, and
S. D.
Bale
, “
Statistical analysis of intermittency and its association with proton heating in the near Sun environment
,” arXiv:2201.10067 (
2022
).
66.
C.
Dong
,
L.
Wang
,
Y.-M.
Huang
,
L.
Comisso
,
T. A.
Sandstrom
, and
A.
Bhattacharjee
, “
Reconnection-driven energy cascade in magnetohydrodynamic turbulence
,”
Sci. Adv.
8
(
49
), eabn7627 (
2022
).
67.
L.
Comisso
and
L.
Sironi
, “
Ion and electron acceleration in fully kinetic plasma turbulence
,”
Astrophys. J. Lett.
936
,
L27
(
2022
).
68.
T.
Hada
,
D.
Koga
, and
E.
Yamamoto
, “
Phase coherence of MHD waves in the solar wind
,”
Space Sci. Rev.
107
,
463
466
(
2003
).
69.
R.
Bruno
,
B.
Bavassano
,
L.
Bianchini
,
E.
Pietropaolo
,
U.
Villante
,
V.
Carbone
,
P.
Veltri
et al, “
Solar wind intermittency studied via local intermittency measure
,” in
Magnetic Fields and Solar Processes
, edited by
A.
Wilson
(
ESA Special Publication
,
1999
), Vol.
9
, p.
1147
.
70.
A.
Chasapis
,
Y.
Yang
,
W. H.
Matthaeus
,
T. N.
Parashar
,
C. C.
Haggerty
,
J. L.
Burch
,
T. E.
Moore
,
C. J.
Pollock
,
J.
Dorelli
,
D. J.
Gershman
,
R. B.
Torbert
, and
C. T.
Russell
, “
Energy conversion and collisionless plasma dissipation channels in the turbulent magnetosheath observed by the magnetospheric multiscale mission
,”
Astrophys. J.
862
,
32
(
2018
).
71.
R.
Chhiber
,
M. L.
Goldstein
,
B. A.
Maruca
,
A.
Chasapis
,
W. H.
Matthaeus
,
D.
Ruffolo
,
R.
Bandyopadhyay
,
T. N.
Parashar
,
R.
Qudsi
,
T. D.
de Wit
,
S. D.
Bale
,
J. W.
Bonnell
,
K.
Goetz
,
P. R.
Harvey
,
R. J.
MacDowall
,
D.
Malaspina
,
M.
Pulupa
,
J. C.
Kasper
,
K. E.
Korreck
,
A. W.
Case
,
M.
Stevens
,
P.
Whittlesey
,
D.
Larson
,
R.
Livi
,
M.
Velli
, and
N.
Raouafi
, “
Clustering of intermittent magnetic and flow structures near parker solar probe's first perihelion—A partial-variance-of-increments analysis
,”
Astrophys. J. Suppl.
246
,
31
(
2020
).
72.
A.
Greco
,
W. H.
Matthaeus
,
S.
Perri
,
K. T.
Osman
,
S.
Servidio
,
M.
Wan
, and
P.
Dmitruk
, “
Partial variance of increments method in solar wind observations and plasma simulations
,”
Space Sci. Rev.
214
,
1
(
2018
).
73.
C.
Jiang
,
R.
Vinuesa
,
R.
Chen
,
J.
Mi
,
S.
Laima
, and
H.
Li
, “
An interpretable framework of data-driven turbulence modeling using deep neural networks
,”
Phys. Fluids
33
,
055133
(
2021
).
74.
D.
Grošelj
,
C. H. K.
Chen
,
A.
Mallet
,
R.
Samtaney
,
K.
Schneider
, and
F.
Jenko
, “
Kinetic turbulence in astrophysical plasmas: Waves and/or structures?
,”
Phys. Rev. X
9
,
031037
(
2019
).
75.
C. Y.
Tu
and
E.
Marsch
, “
Magnetohydrodynamic structures waves and turbulence in the solar wind: Observations and theories
,”
Space Sci. Rev.
73
,
1
210
(
1995
).
76.
B. K.
Shivamoggi
, “
Multi-fractal aspects of spatial intermittency in fully developed magnetohydrodynamic turbulence
,”
Ann. Phys.
253
,
239
264
(
1997
).
77.
D.
Biskamp
and
W.-C.
Müller
, “
Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence
,”
Phys. Plasmas
7
,
4889
4900
(
2000
).
78.
E.
Leonardis
,
S. C.
Chapman
,
W.
Daughton
,
V.
Roytershteyn
, and
H.
Karimabadi
, “
Identification of intermittent multifractal turbulence in fully kinetic simulations of magnetic reconnection
,”
Phys. Rev. Lett.
110
,
205002
(
2013
).
79.
D. A.
Schaffner
and
M. R.
Brown
, “
Multifractal and monofractal scaling in a laboratory MHD turbulence experiment
,”
Astrophys. J.
811
,
61
(
2015
).
80.
H.
Isliker
,
V.
Archontis
, and
L.
Vlahos
, “
Particle acceleration and heating in regions of magnetic flux emergence
,”
Astrophys. J.
882
,
57
(
2019
).
81.
N.
Sioulas
,
H.
Isliker
, and
L.
Vlahos
, “
Stochastic turbulent acceleration in a fractal environment
,”
Astrophys. J. Lett.
895
,
L14
(
2020
).
82.
A.
Greco
,
F.
Valentini
,
S.
Servidio
, and
W. H.
Matthaeus
, “
Inhomogeneous kinetic effects related to intermittent magnetic discontinuities
,”
Phys. Rev. E
86
,
066405
(
2012
).
83.
S.
Servidio
,
K. T.
Osman
,
F.
Valentini
,
D.
Perrone
,
F.
Califano
,
S.
Chapman
,
W. H.
Matthaeus
, and
P.
Veltri
, “
Proton kinetic effects in Vlasov and solar wind turbulence
,”
Astrophys. J. Lett.
781
,
L27
(
2014
).
84.
E.
Martines
,
M.
Hron
, and
J.
Stöckel
, “
Coherent structures in the edge turbulence of the CASTOR tokamak
,”
Plasma Phys. Controlled Fusion
44
,
351
359
(
2002
).
85.
D.
Galassi
,
P.
Tamain
,
H.
Bufferand
,
G.
Ciraolo
,
P.
Ghendrih
,
C.
Baudoin
,
C.
Colin
,
N.
Fedorczak
,
N.
Nace
, and
E.
Serre
, “
Drive of parallel flows by turbulence and large-scale E × B transverse transport in divertor geometry
,”
Nucl. Fusion
57
,
036029
(
2017
).
86.
D.
Galassi
,
G.
Ciraolo
,
P.
Tamain
,
H.
Bufferand
,
P.
Ghendrih
,
N.
Nace
, and
E.
Serre
, “
Tokamak edge plasma turbulence interaction with magnetic X-point in 3D global simulations
,”
Fluids
4
,
50
(
2019
).
87.
X.
Garbet
,
P.
Mantica
,
F.
Ryter
,
G.
Cordey
,
F.
Imbeaux
,
C.
Sozzi
,
A.
Manini
,
E.
Asp
,
V.
Parail
,
R.
Wolf
, and
JET EFDA Contributors
, “
Profile stiffness and global confinement
,”
Plasma Phys. Controlled Fusion
46
,
1351
1373
(
2004
).
88.
F.
Wagner
,
G.
Becker
,
K.
Behringer
,
D.
Campbell
,
A.
Eberhagen
,
W.
Engelhardt
,
G.
Fussmann
,
O.
Gehre
,
J.
Gernhardt
,
G. V.
Gierke
,
G.
Haas
,
M.
Huang
,
F.
Karger
,
M.
Keilhacker
,
O.
Klüber
,
M.
Kornherr
,
K.
Lackner
,
G.
Lisitano
,
G. G.
Lister
,
H. M.
Mayer
,
D.
Meisel
,
E. R.
Müller
,
H.
Murmann
,
H.
Niedermeyer
,
W.
Poschenrieder
,
H.
Rapp
,
H.
Röhr
,
F.
Schneider
,
G.
Siller
,
E.
Speth
,
A.
Stäbler
,
K. H.
Steuer
,
G.
Venus
,
O.
Vollmer
, and
Z.
, “
Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak
,”
Phys. Rev. Lett.
49
,
1408
1412
(
1982
).
89.
K. H.
Burrell
, “
Effects of E × B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices
,”
Phys. Plasmas
4
,
1499
1518
(
1997
).
90.
H.
Zohm
, “
Edge localized modes (ELMs)
,”
Plasma Phys. Controlled Fusion
38
,
105
128
(
1996
).
91.
J. W.
Connor
, “
Edge-localized modes—Physics and theory
,”
Plasma Phys. Controlled Fusion
40
,
531
542
(
1998
).
92.
A. W.
Leonard
, “
Edge-localized-modes in tokamaks
,”
Phys. Plasmas
21
,
090501
(
2014
).
93.
C.
Ham
,
A.
Kirk
,
S.
Pamela
, and
H.
Wilson
, “
Filamentary plasma eruptions and their control on the route to fusion energy
,”
Nat. Rev. Phys.
2
,
159
167
(
2020
).
94.
W.
Fundamenski
,
V.
Naulin
,
T.
Neukirch
,
O. E.
Garcia
, and
J. J.
Rasmussen
, “
On the relationship between ELM filaments and solar flares
,”
Plasma Phys. Controlled Fusion
49
,
R43
R86
(
2007
).
95.
K.
McClements
, “
Reconnection and fast particle production in tokamak and solar plasmas
,”
Adv. Space Res.
63
,
1443
1452
(
2019
).
96.
H.
Isliker
,
A.
Cathey
,
M.
Hoelzl
,
S.
Pamela
, and
L.
Vlahos
, “
Filamentary plasma eruptions and the heating and acceleration of electrons
,”
Phys. Plasmas
29
,
112306
(
2022
).
97.
W. H.
Matthaeus
,
M.
Wan
,
S.
Servidio
,
A.
Greco
,
K. T.
Osman
,
S.
Oughton
, and
P.
Dmitruk
, “
Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas
,”
Philos. Trans. R. Soc. London A
373
,
20140154
(
2015
).
98.
E.
Yordanova
,
Z.
Vörös
,
A.
Varsani
,
D. B.
Graham
,
C.
Norgren
,
Y. V.
Khotyaintsev
,
A.
Vaivads
,
E.
Eriksson
,
R.
Nakamura
,
P. A.
Lindqvist
,
G.
Marklund
,
R. E.
Ergun
,
W.
Magnes
,
W.
Baumjohann
,
D.
Fischer
,
F.
Plaschke
,
Y.
Narita
,
C. T.
Russell
,
R. J.
Strangeway
,
O.
Le Contel
,
C.
Pollock
,
R. B.
Torbert
,
B. J.
Giles
,
J. L.
Burch
,
L. A.
Avanov
,
J. C.
Dorelli
,
D. J.
Gershman
,
W. R.
Paterson
,
B.
Lavraud
, and
Y.
Saito
, “
Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath
,”
J. Geophys. Res.
43
,
5969
5978
, https://doi.org/ 10.1002/2016GL069191 (
2016
).
99.
Z.
Vörös
,
E.
Yordanova
,
A.
Varsani
,
K. J.
Genestreti
,
Y. V.
Khotyaintsev
,
W.
Li
,
D. B.
Graham
,
C.
Norgren
,
R.
Nakamura
,
Y.
Narita
,
F.
Plaschke
,
W.
Magnes
,
W.
Baumjohann
,
D.
Fischer
,
A.
Vaivads
,
E.
Eriksson
,
P. A.
Lindqvist
,
G.
Marklund
,
R. E.
Ergun
,
M.
Leitner
,
M. P.
Leubner
,
R. J.
Strangeway
,
O. L.
Contel
,
C.
Pollock
,
B. J.
Giles
,
R. B.
Torbert
,
J. L.
Burch
,
L. A.
Avanov
,
J. C.
Dorelli
,
D. J.
Gershman
,
W. R.
Paterson
,
B.
Lavraud
, and
Y.
Saito
, “
MMS observation of magnetic reconnection in the turbulent magnetosheath
,”
J. Geophys. Res.
122
,
11442
11467
, https://doi.org/10.1002/2017JA024535 (
2017
).
100.
K.
Manolakou
,
A.
Anastasiadis
, and
L.
Vlahos
, “
Particle-acceleration and radiation in the turbulent flow of a jet
,”
Astron. Astrophys.
345
,
653
662
(
1999
).
101.
C.
Meringolo
,
A.
Cruz-Osorio
,
L.
Rezzolla
, and
S.
Servidio
, “
Microphysical plasma relations from special-relativistic turbulence
,”
Astrophys. J.
944
,
122
(
2023
).
102.
L.
Comisso
,
M.
Lingam
,
Y. M.
Huang
, and
A.
Bhattacharjee
, “
General theory of the plasmoid instability
,”
Phys. Plasmas
23
,
100702
(
2016
).
103.
L.
Comisso
,
M.
Lingam
,
Y. M.
Huang
, and
A.
Bhattacharjee
, “
Plasmoid instability in forming current sheets
,”
Astrophys. J.
850
,
142
(
2017
).
104.
A.
Lazarian
,
G. L.
Eyink
,
A.
Jafari
,
G.
Kowal
,
H.
Li
,
S.
Xu
, and
E. T.
Vishniac
, “
3D turbulent reconnection: Theory, tests, and astrophysical implications
,”
Phys. Plasmas
27
,
012305
(
2020
).
105.
M.
Onofri
,
L.
Primavera
,
F.
Malara
, and
P.
Veltri
, “
Three-dimensional simulations of magnetic reconnection in slab geometry
,”
Phys. Plasmas
11
,
4837
4846
(
2004
).
106.
M.
Onofri
,
H.
Isliker
, and
L.
Vlahos
, “
Stochastic acceleration in turbulent electric fields generated by 3D reconnection
,”
Phys. Rev. Lett.
96
,
151102
(
2006
).
107.
G.
Kowal
,
E. M.
de Gouveia Dal Pino
, and
A.
Lazarian
, “
Magnetohydrodynamic simulations of reconnection and particle acceleration: Three-dimensional effects
,”
Astrophys. J.
735
,
102
(
2011
).
108.
W.
Daughton
,
V.
Roytershteyn
,
H.
Karimabadi
,
L.
Yin
,
B. J.
Albright
,
B.
Bergen
, and
K. J.
Bowers
, “
Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas
,”
Nat. Phys.
7
,
539
542
(
2011
).
109.
H.
Karimabadi
,
V.
Roytershteyn
,
W.
Daughton
, and
Y.-H.
Liu
, “
Recent evolution in the theory of magnetic reconnection and its connection with turbulence
,”
Space Sci. Rev.
178
,
307
323
(
2013
).
110.
J. S.
Oishi
,
M.-M.
Mac Low
,
D. C.
Collins
, and
M.
Tamura
, “
Self-generated turbulence in magnetic reconnection
,”
Astrophys. J. Lett.
806
,
L12
(
2015
).
111.
J. T.
Dahlin
,
J. F.
Drake
, and
M.
Swisdak
, “
Electron acceleration in three-dimensional magnetic reconnection with a guide field
,”
Phys. Plasmas
22
,
100704
(
2015
).
112.
G.
Kowal
,
D. A.
Falceta-Gonçalves
,
A.
Lazarian
, and
E. T.
Vishniac
, “
Statistics of reconnection-driven turbulence
,”
Astrophys. J.
838
,
91
(
2017
).
113.
D.
Burgess
,
P.
Hellinger
,
I.
Gingell
, and
P. M.
Trávníček
, “
Microstructure in two- and three-dimensional hybrid simulations of perpendicular collisionless shocks
,”
J. Plasma Phys.
82
,
905820401
(
2016
).
114.
V.
Archontis
and
A. W.
Hood
, “
A numerical model of standard to blowout jets
,”
Astrophys. J.
769
,
L21
(
2013
).
115.
A.
Greco
,
S.
Perri
,
S.
Servidio
,
E.
Yordanova
, and
P.
Veltri
, “
The complex structure of magnetic field discontinuities in the turbulent solar wind
,”
Astrophys. J. Lett.
823
,
L39
(
2016
).
116.
R.
Beg
,
A. J. B.
Russell
, and
G.
Hornig
, “
Evolution, structure, and topology of self-generated turbulent reconnection layers
,”
Astrophys. J.
940
,
94
(
2022
).
117.
J.
Heyvaerts
,
E. R.
Priest
, and
D. M.
Rust
, “
An emerging flux model for the solar phenomenon
,”
Astrophys. J.
216
,
123
137
(
1977
).
118.
V.
Archontis
,
F.
Moreno-Insertis
,
K.
Galsgaard
,
A.
Hood
, and
E.
O'Shea
, “
Emergence of magnetic flux from the convection zone into the corona
,”
Astron. Astrophys.
426
,
1047
1063
(
2004
).
119.
V.
Archontis
,
F.
Moreno-Insertis
,
K.
Galsgaard
, and
A. W.
Hood
, “
The three-dimensional interaction between emerging magnetic flux and a large-scale coronal field: Reconnection, current sheets, and jets
,”
Astrophys. J.
635
,
1299
1318
(
2005
).
120.
K.
Galsgaard
,
F.
Moreno-Insertis
,
V.
Archontis
, and
A.
Hood
, “
A three-dimensional study of reconnection, current sheets, and jets resulting from magnetic flux emergence in the Sun
,”
Astrophys. J.
618
,
L153
L156
(
2005
).
121.
V.
Archontis
and
A. W.
Hood
, “
Magnetic flux emergence: A precursor of solar plasma expulsion
,”
Astron. Astrophys.
537
,
A62
(
2012
).
122.
V.
Archontis
, “
Magnetic flux emergence and associated dynamic phenomena in the Sun
,”
Philos. Trans. R. Soc. London Ser. A
370
,
3088
3113
(
2012
).
123.
F.
Moreno-Insertis
and
K.
Galsgaard
, “
Plasma jets and eruptions in solar coronal holes: A three-dimensional flux emergence experiment
,”
Astrophys. J.
771
,
20
(
2013
).
124.
N. E.
Raouafi
,
S.
Patsourakos
,
E.
Pariat
,
P. R.
Young
,
A. C.
Sterling
,
A.
Savcheva
,
M.
Shimojo
,
F.
Moreno-Insertis
,
C. R.
DeVore
,
V.
Archontis
,
T.
Török
,
H.
Mason
,
W.
Curdt
,
K.
Meyer
,
K.
Dalmasse
, and
Y.
Matsui
, “
Solar coronal jets: Observations, theory, and modeling
,”
Space Sci. Rev.
201
,
1
53
(
2016
).
125.
P. F.
Wyper
,
C. R.
DeVore
,
J. T.
Karpen
, and
B. J.
Lynch
, “
Three-dimensional simulations of tearing and intermittency in coronal jets
,”
Astrophys. J.
827
,
4
(
2016
).
126.
P. F.
Wyper
,
S. K.
Antiochos
, and
C. R.
DeVore
, “
A universal model for solar eruptions
,”
Nature
544
,
452
455
(
2017
).
127.
M.
El-Alaoui
,
R. J.
Walker
,
J. M.
Weygand
,
G.
Lapenta
, and
M. L.
Goldstein
, “
Magnetohydrodynamic turbulence in the Earth's magnetotail from observations and global MHD simulations
,”
Front. Astron. Space Sci.
8
,
23
(
2021
).
128.
L.-J.
Chen
,
J.
Ng
,
Y.
Omelchenko
, and
S.
Wang
, “
Magnetopause reconnection and indents induced by foreshock turbulence
,”
J. Geophys. Res.
48
,
e93029
, https://doi.org/10.1029/2021GL093029 (
2021
).
129.
K.
Nishida
,
N.
Nishizuka
, and
K.
Shibata
, “
The role of a flux rope ejection in a three-dimensional magnetohydrodynamic simulation of a solar flare
,”
Astrophys. J. Lett.
775
,
L39
(
2013
).
130.
S.
Inoue
, “
Magnetohydrodynamics modeling of coronal magnetic field and solar eruptions based on the photospheric magnetic field
,”
Prog. Earth Planet. Sci.
3
,
19
(
2016
).
131.
S.
Inoue
,
D.
Shiota
,
Y.
Bamba
, and
S.-H.
Park
, “
Magnetohydrodynamic modeling of a solar eruption associated with an X9.3 flare observed in the active region 12673
,”
Astrophys. J.
867
,
83
(
2018
).
132.
X.
Cheng
,
Y.
Li
,
L. F.
Wan
,
M. D.
Ding
,
P. F.
Chen
,
J.
Zhang
, and
J. J.
Liu
, “
Observations of turbulent magnetic reconnection within a solar current sheet
,”
Astrophys. J.
866
,
64
(
2018
).
133.
R. B.
Decker
, “
Computer modeling of test particle acceleration at oblique shocks
,”
Space Sci. Rev.
48
,
195
262
(
1988
).
134.
E.
Fermi
, “
Galactic magnetic fields and the origin of cosmic radiation
,”
Astrophys. J.
119
,
1
(
1954
).
135.
L. O.
Drury
, “
An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
,”
Rep. Prog. Phys.
46
,
973
1027
(
1983
).
136.
R. B.
Decker
and
L.
Vlahos
, “
Numerical studies of particle acceleration at turbulent, oblique shocks with an application to prompt ion acceleration during solar flares
,”
Astrophys. J.
306
,
710
(
1986
).
137.
A. R.
Bell
, “
The acceleration of cosmic rays in shock fronts—I
,”
Mon. Not. R. Astron. Soc.
182
,
147
156
(
1978
).
138.
A. R.
Bell
, “
The acceleration of cosmic rays in shock fronts—II
,”
Mon. Not. R. Astron. Soc.
182
,
443
455
(
1978
).
139.
N.
Omidi
, “
Formation of cavities in the foreshock
,”
AIP Conf. Ser.
932
,
181
190
(
2007
).
140.
I.
Gingell
,
S. J.
Schwartz
,
J. P.
Eastwood
,
J. E.
Stawarz
,
J. L.
Burch
,
R. E.
Ergun
,
S. A.
Fuselier
,
D. J.
Gershman
,
B. L.
Giles
,
Y. V.
Khotyaintsev
,
B.
Lavraud
,
P. A.
Lindqvist
,
W. R.
Paterson
,
T. D.
Phan
,
C. T.
Russell
,
R. J.
Strangeway
,
R. B.
Torbert
, and
F.
Wilder
, “
Statistics of reconnecting current sheets in the transition region of Earth's bow shock
,”
J. Geophys. Res.
125
,
e27119
, https://doi.org/10.1029/2019JA027119 (
2020
).
141.
Q.
Lu
,
H.
Wang
,
X.
Wang
,
S.
Lu
,
R.
Wang
,
X.
Gao
, and
S.
Wang
, “
Turbulence-driven magnetic reconnection in the magnetosheath downstream of a quasi-parallel shock: A three-dimensional global hybrid simulation
,”
J. Geophys. Res.
47
,
e85661
, https://doi.org/10.1029/2019GL085661 (
2020
).
142.
J. A.
Kropotina
,
L.
Webster
,
A. V.
Artemyev
,
A. M.
Bykov
,
D. L.
Vainchtein
, and
I. Y.
Vasko
, “
Solar wind discontinuity transformation at the bow shock
,”
Astrophys. J.
913
,
142
(
2021
).
143.
D.
Trotta
,
F.
Valentini
,
D.
Burgess
, and
S.
Servidio
, “
Phase space transport in the interaction between shocks and plasma turbulence
,”
Proc. Natl. Acad. Sci.
118
,
2026764118
(
2021
).
144.
G. K.
Parks
,
E.
Lee
,
Z. W.
Yang
,
N.
Lin
,
S. Y.
Fu
, and
Y.
Liu
, “
Solar wind interaction with Earth's bow shock
,” in
Magnetospheres in the Solar System
, edited by
R.
Maggiolo
,
N.
André
,
H.
Hasegawa
, and
D. T.
Welling
(
American Geophysical Union
,
Wiley
,
2021
), Vol.
2
, p.
125
.
145.
I.
Gingell
,
S. J.
Schwartz
,
D.
Burgess
,
A.
Johlander
,
C. T.
Russell
,
J. L.
Burch
,
R. E.
Ergun
,
S.
Fuselier
,
D. J.
Gershman
,
B. L.
Giles
,
K. A.
Goodrich
,
Y. V.
Khotyaintsev
,
B.
Lavraud
,
P.-A.
Lindqvist
,
R. J.
Strangeway
,
K.
Trattner
,
R. B.
Torbert
,
H.
Wei
, and
F.
Wilder
, “
MMS observations and hybrid simulations of surface ripples at a marginally quasi-parallel shock
,”
J. Geophys. Res.
122
,
11003
11017
, https://doi.org/10.1002/2017JA024538 (
2017
).
146.
D.
Burgess
,
E. A.
Lucek
,
M.
Scholer
,
S. D.
Bale
,
M. A.
Balikhin
,
A.
Balogh
,
T. S.
Horbury
,
V. V.
Krasnoselskikh
,
H.
Kucharek
,
B.
Lembège
,
E.
Möbius
,
S. J.
Schwartz
,
M. F.
Thomsen
, and
S. N.
Walker
, “
Quasi-parallel shock structure and processes
,”
Space Sci. Rev.
118
,
205
222
(
2005
).
147.
L. B.
Wilson
,
A.
Koval
,
D. G.
Sibeck
,
A.
Szabo
,
C. A.
Cattell
,
J. C.
Kasper
,
B. A.
Maruca
,
M.
Pulupa
,
C. S.
Salem
, and
M.
Wilber
, “
Shocklets, SLAMS, and field-aligned ion beams in the terrestrial foreshock
,”
J. Geophys. Res.
118
,
957
966
, https://doi.org/10.1029/2012JA018186 (
2013
).
148.
M.
Palmroth
,
H.
Hietala
,
F.
Plaschke
,
M.
Archer
,
T.
Karlsson
,
X.
Blanco-Cano
,
D.
Sibeck
,
P.
Kajdič
,
U.
Ganse
,
Y.
Pfau-Kempf
,
M.
Battarbee
, and
L.
Turc
, “
Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation
,”
Ann. Geophys.
36
,
1171
1182
(
2018
).
149.
Y.
Matsumoto
,
T.
Amano
,
T. N.
Kato
, and
M.
Hoshino
, “
Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave
,”
Science
347
,
974
978
(
2015
).
150.
D.
Caprioli
and
C.
Haggerty
, “
The issue with diffusive shock acceleration
,” in
36th International Cosmic Ray Conference (ICRC2019)
(PoS
2019
), Vol. 36, p.
209
.
151.
D.
Caprioli
,
C. C.
Haggerty
, and
P.
Blasi
, “
Kinetic simulations of cosmic-ray-modified shocks—II: Particle spectra
,”
Astrophys. J.
905
,
2
(
2020
).
152.
D.
Caprioli
and
A.
Spitkovsky
, “
Simulations of ion acceleration at non-relativistic shocks—I: Acceleration efficiency
,”
Astrophys. J
783
,
91
(
2014
).
153.
D.
Trotta
,
F.
Pecora
,
A.
Settino
,
D.
Perrone
,
H.
Hietala
,
T.
Horbury
,
W.
Matthaeus
,
D.
Burgess
,
S.
Servidio
, and
F.
Valentini
, “
On the transmission of turbulent structures across the Earth's bow shock
,”
Astrophys. J.
933
,
167
(
2022
).
154.
Z.
Guo
,
Y.
Lin
, and
X.
Wang
, “
Global hybrid simulations of interaction between interplanetary rotational discontinuity and bow shock/magnetosphere: Can ion scale magnetic reconnection be driven by rotational discontinuity downstream of quasi parallel shock?
,”
J. Geophys. Res.
126
,
e28853
, https://doi.org/10.1029/2020JA028853 (
2021
).
155.
T.
Gold
, “The physics of solar flares,” in Proceedings of the AAS-NASA Symposium, Greenbelt, MD, 28–30 October 1963, edited by Wilmot N. Hess (National Aeronautics and Space Administration, Science and Technical Information Division, Washington DC, 1964), p. 389.
156.
E. N.
Parker
, “
Topological dissipation and the small-scale fields in turbulent gases
,”
Astrophys. J.
174
,
499
(
1972
).
157.
W. M.
Glencross
, “
Heating of coronal material at X-ray bright points
,”
Astrophys. J. Lett.
199
,
L53
L56
(
1975
).
158.
R. H.
Levine
, “
A new theory of coronal heating
,”
Astrophys. J.
190
,
457
466
(
1974
).
159.
P. A.
Sturrock
and
Y.
Uchida
, “
Coronal heating by stochastic magnetic pumping
,”
Astrophys. J.
246
,
331
336
(
1981
).
160.
C.
Chiuderi
,
Keys to Understanding the Corona
, edited by
P.
Maltby
and
B.
Battrick
(
ESA Special Publication
,
1993
), Vol.
1157
, pp.
25
32
.
161.
N. B.
Crosby
,
M. J.
Aschwanden
, and
B. R.
Dennis
, “
Frequency distributions and correlations of solar X-ray flare parameters
,”
Sol. Phys.
143
,
275
299
(
1993
).
162.
N. B.
Crosby
, “
Frequency distributions: From the Sun to the Earth
,”
Nonlinear Processes Geophys.
18
,
791
805
(
2011
).
163.
M. J.
Aschwanden
,
N. B.
Crosby
,
M.
Dimitropoulou
,
M. K.
Georgoulis
,
S.
Hergarten
,
J.
McAteer
,
A. V.
Milovanov
,
S.
Mineshige
,
L.
Morales
,
N.
Nishizuka
,
G.
Pruessner
,
R.
Sanchez
,
A. S.
Sharma
,
A.
Strugarek
, and
V.
Uritsky
, “
25 years of self-organized criticality: Solar and astrophysics
,”
Space Sci. Rev.
198
,
47
166
(
2016
).
164.
Z.
Mikic
,
D. D.
Schnack
, and
G.
van Hoven
, “
Creation of current filaments in the solar corona
,”
Astrophys. J.
338
,
1148
1157
(
1989
).
165.
G.
Einaudi
,
M.
Velli
,
H.
Politano
, and
A.
Pouquet
, “
Energy release in a turbulent corona
,”
Astrophys. J. Lett.
457
,
L113
(
1996
).
166.
M. K.
Georgoulis
,
M.
Velli
, and
G.
Einaudi
, “
Statistical properties of magnetic activity in the solar corona
,”
Astrophys. J.
497
,
957
966
(
1998
).
167.
A. F.
Rappazzo
,
M.
Velli
, and
G.
Einaudi
, “
Shear photospheric forcing and the origin of turbulence in coronal loops
,”
Astrophys. J.
722
,
65
78
(
2010
).
168.
V.
Hansteen
,
B.
De Pontieu
,
M.
Carlsson
,
J.
Lemen
,
A.
Title
,
P.
Boerner
,
N.
Hurlburt
,
T. D.
Tarbell
,
J. P.
Wuelser
,
T. M. D.
Pereira
,
E. E.
De Luca
,
L.
Golub
,
S.
McKillop
,
K.
Reeves
,
S.
Saar
,
P.
Testa
,
H.
Tian
,
C.
Kankelborg
,
S.
Jaeggli
,
L.
Kleint
, and
J.
Martínez-Sykora
, “
The unresolved fine structure resolved: IRIS observations of the solar transition region
,”
Science
346
,
1255757
(
2014
).
169.
R. B.
Dahlburg
,
G.
Einaudi
,
B. D.
Taylor
,
I.
Ugarte-Urra
,
H. P.
Warren
,
A. F.
Rappazzo
, and
M.
Velli
, “
Observational signatures of coronal loop heating and cooling driven by footpoint shuffling
,”
Astrophys. J.
817
,
47
(
2016
).
170.
C.
Kanella
and
B. V.
Gudiksen
, “
Identification of coronal heating events in 3D simulations
,”
Astron. Astrophys.
603
,
A83
(
2017
).
171.
C.
Kanella
and
B. V.
Gudiksen
, “
Investigating 4D coronal heating events in magnetohydrodynamic simulations
,”
Astron. Astrophys.
617
,
A50
(
2018
).
172.
V.
Hansteen
,
A.
Ortiz
,
V.
Archontis
,
M.
Carlsson
,
T. M. D.
Pereira
, and
J. P.
Bjørgen
, “
Ellerman bombs and UV bursts: Transient events in chromospheric current sheets
,”
Astron. Astrophys.
626
,
A33
(
2019
).
173.
R.
Turkmani
,
L.
Vlahos
,
K.
Galsgaard
,
P.
Cargill
, and
H.
Isliker
, “
Particle acceleration in stressed coronal magnetic fields
,”
Astrophys. J. Lett.
620
,
L59
(
2005
).
174.
R.
Turkmani
,
P.
Cargill
,
K.
Galsgaard
,
L.
Vlahos
, and
H.
Isliker
, “
Particle acceleration in stochastic current sheets in stressed coronal active regions
,”
Astron. Astrophys.
449
,
749
757
(
2006
).
175.
A. F.
Rappazzo
,
M.
Velli
, and
G.
Einaudi
, “
Field lines twisting in a noisy corona: implications for energy storage and release, and initiation of solar eruptions
,”
Astrophys. J.
771
,
76
(
2013
).
176.
A. F.
Rappazzo
and
E. N.
Parker
, “
Current sheets formation in tangled coronal magnetic fields
,”
Astrophys. J. Lett.
773
,
L2
(
2013
).
177.
A. F.
Rappazzo
,
W. H.
Matthaeus
,
D.
Ruffolo
,
M.
Velli
, and
S.
Servidio
, “
Coronal heating topology: The interplay of current sheets and magnetic field lines
,”
Astrophys. J.
844
,
87
(
2017
).
178.
J.
Threlfall
,
J.
Reid
, and
A. W.
Hood
, “
Can multi-threaded flux tubes in coronal arcades support a magnetohydrodynamic avalanche?
,”
Sol. Phys.
296
,
120
(
2021
).
179.
V.
Archontis
and
V.
Hansteen
, “
Clusters of small eruptive flares produced by magnetic reconnection in the Sun
,”
Astrophys. J.
788
,
L2
(
2014
).
180.
C.
Kanella
and
B. V.
Gudiksen
, “
Emission of Joule heating events in simulations of the solar corona
,”
Astron. Astrophys.
621
,
A95
(
2019
).
181.
M. C. M.
Cheung
,
M.
Rempel
,
G.
Chintzoglou
,
F.
Chen
,
P.
Testa
,
J.
Martínez-Sykora
,
A.
Sainz Dalda
,
M. L.
DeRosa
,
A.
Malanushenko
,
V.
Hansteen
,
B.
De Pontieu
,
M.
Carlsson
,
B.
Gudiksen
, and
S. W.
McIntosh
, “
A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare
,”
Nat. Astron.
3
,
160
166
(
2019
).
182.
S.
Inoue
,
K.
Hayashi
,
T.
Miyoshi
,
J.
Jing
, and
H.
Wang
, “
A comparative study of solar active region 12371 with data-constrained and data-driven magnetohydrodynamic simulations
,”
Astrophys. J. Lett.
944
,
L44
(
2023
).
183.
W.
He
,
C.
Jiang
,
P.
Zou
,
A.
Duan
,
X.
Feng
,
P.
Zuo
, and
Y.
Wang
, “
Data-driven MHD simulation of the formation and initiation of a large-scale preflare magnetic flux rope in AR 12371
,”
Astrophys. J.
892
,
9
(
2020
).
184.
M.
Gordovskyy
and
P. K.
Browning
, “
Particle acceleration by magnetic reconnection in a twisted coronal loop
,”
Astrophys. J.
729
,
101
(
2011
).
185.
L.
Vlahos
and
H.
Isliker
, “
Complexity methods applied to turbulence in plasma astrophysics
,”
Eur. Phys. J.
225
,
977
999
(
2016
).
186.
L.
Vlahos
,
H.
Isliker
, and
F.
Lepreti
, “
Particle acceleration in an evolving network of unstable current sheets
,”
Astrophys. J.
608
,
540
553
(
2004
).
187.
B.
Chopard
and
M.
Droz
,
Cellular Automata Modeling of Physical Systems
(
Cambridge University Press
,
Cambridge, UK
,
2005
).
188.
E. T.
Lu
and
R. J.
Hamilton
, “
Avalanches and the distribution of solar flares
,”
Astrophys. J. Lett.
380
,
L89
L92
(
1991
).
189.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality: An explanation of 1/f noise
,”
Phys. Rev. Lett.
59
,
381
384
(
1987
).
190.
P.
Charbonneau
,
S. W.
McIntosh
,
H.-L.
Liu
, and
T. J.
Bogdan
, “
Avalanche models for solar flares (Invited Review)
,”
Sol. Phys.
203
,
321
353
(
2001
).
191.
M. J.
Aschwanden
,
Self-Organized Criticality in Astrophysics
(
Springer-Praxis
,
Berlin
,
2011
).
192.
H.
Isliker
,
A.
Anastasiadis
, and
L.
Vlahos
, “
MHD consistent cellular automata (CA) models—I: Basic features
,”
Astron. Astrophys.
363
,
1134
1144
(
2000
).
193.
H.
Isliker
,
A.
Anastasiadis
, and
L.
Vlahos
, “
MHD consistent cellular automata (CA) models—II: Applications to solar flares
,”
Astron. Astrophys.
377
,
1068
1080
(
2001
).
194.
L.
Vlahos
,
M.
Georgoulis
,
R.
Kluiving
, and
P.
Paschos
, “
The statistical flare
,”
Astron. Astrophys.
299
,
897
(
1995
).
195.
M. K.
Georgoulis
and
L.
Vlahos
, “
Coronal heating by nanoflares and the variability of the occurence frequency in solar flares
,”
Astrophys. J.
469
,
L135
(
1996
).
196.
M. K.
Georgoulis
and
L.
Vlahos
, “
Variability of the occurrence frequency of solar flares and the statistical flare
,”
Astron. Astrophys.
336
,
721
734
(
1998
).
197.
E. T.
Lu
,
R. J.
Hamilton
,
J. M.
McTiernan
, and
K. R.
Bromund
, “
Solar flares and avalanches in driven dissipative systems
,”
Astrophys. J.
412
,
841
852
(
1993
).
198.
H.
Isliker
,
A.
Anastasiadis
,
D.
Vassiliadis
, and
L.
Vlahos
, “
Solar flare cellular automata interpreted as discretized MHD equations
,”
Astron. Astrophys.
335
,
1085
1092
(
1998
).
199.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran
,
2nd ed.
(
Cambridge University Press
,
1992
).
200.
T.
Fragos
,
E.
Rantsiou
, and
L.
Vlahos
, “
On the distribution of magnetic energy storage in solar active regions
,”
Astron. Astrophys.
420
,
719
728
(
2004
).
201.
K.
Moraitis
,
A.
Toutountzi
,
H.
Isliker
,
M.
Georgoulis
,
L.
Vlahos
, and
G.
Chintzoglou
, “
An observationally-driven kinetic approach to coronal heating
,”
Astron. Astrophys.
596
,
A56
(
2016
).
202.
M.
Dimitropoulou
,
H.
Isliker
,
L.
Vlahos
, and
M. K.
Georgoulis
, “
Simulating flaring events in complex active regions driven by observed magnetograms
,”
Astron. Astrophys.
529
,
A101
(
2011
).
203.
M.
Dimitropoulou
,
H.
Isliker
,
L.
Vlahos
, and
M. K.
Georgoulis
, “
Dynamic data-driven integrated flare model based on self-organized criticality
,”
Astron. Astrophys.
553
,
A65
(
2013
).
204.
A.
Anastasiadis
and
L.
Vlahos
, “
Particle acceleration in an evolving active region by an ensemble of shock waves
,”
Astrophys. J.
428
,
819
826
(
1994
).
205.
L.
Vlahos
, “
Theory of fragmented energy release in the Sun
,”
Space Sci. Rev.
68
,
39
50
(
1994
).
206.
V. M.
Uritsky
,
M.
Paczuski
,
J. M.
Davila
, and
S. I.
Jones
, “
Coexistence of self-organized criticality and intermittent turbulence in the solar corona
,”
Phys. Rev. Lett.
99
,
025001
(
2007
).
207.
V. M.
Uritsky
and
J. M.
Davila
, “
Multiscale dynamics of solar magnetic structures
,”
Astrophys. J.
748
,
60
(
2012
).
208.
R. B.
Dahlburg
,
J. A.
Klimchuk
, and
S. K.
Antiochos
, “
An explanation for the ‘switch-on’ nature of magnetic energy release and its application to coronal heating
,”
Astrophys. J.
622
,
1191
1201
(
2005
).
You do not currently have access to this content.