Many scientific problems can be formulated as sparse regression, i.e., regression onto a set of parameters when there is a desire or expectation that some of the parameters are exactly zero or do not substantially contribute. This includes many problems in signal and image processing, system identification, optimization, and parameter estimation methods such as Gaussian process regression. Sparsity facilitates exploring high-dimensional spaces while finding parsimonious and interpretable solutions. In the present work, we illustrate some of the important ways in which sparse regression appears in plasma physics and point out recent contributions and remaining challenges to solving these problems in this field. A brief review is provided for the optimization problem and the state-of-the-art solvers, especially for constrained and high-dimensional sparse regression.

1.
M. L.
Walker
,
E.
Schuster
,
D.
Mazon
, and
D.
Moreau
, “
Open and emerging control problems in tokamak plasma control
,” in
47th IEEE Conference on Decision and Control
(
IEEE
,
2008
), pp.
3125
3132
.
2.
F.
Felici
, “
Real-time control of tokamak plasmas: From control of physics to physics-based control
,” Ph.D. thesis (
École Polytechnique Fédérale de Lausanne
,
2011
).
3.
M. L.
Walker
,
P.
De Vries
,
F.
Felici
, and
E.
Schuster
, “
Introduction to tokamak plasma control
,” in
American Control Conference (ACC)
(
IEEE
,
2020
), pp.
2901
2918
.
4.
G.
Grieger
,
W.
Lotz
,
P.
Merkel
,
J.
Nührenberg
,
J.
Sapper
,
E.
Strumberger
,
H.
Wobig
,
R.
Burhenn
,
V.
Erckmann
,
U.
Gasparino
 et al, “
Physics optimization of stellarators
,”
Phys. Fluids B
4
,
2081
2091
(
1992
).
5.
L.-M.
Imbert-Gerard
,
E. J.
Paul
, and
A. M.
Wright
, “
An introduction to stellarators: From magnetic fields to symmetries and optimization
,” arXiv:1908.05360 (
2019
).
6.
C.
Hegna
,
D.
Anderson
,
A.
Bader
,
T.
Bechtel
,
A.
Bhattacharjee
,
M.
Cole
,
M.
Drevlak
,
J.
Duff
,
B.
Faber
,
S.
Hudson
 et al, “
Improving the stellarator through advances in plasma theory
,”
Nucl. Fusion
62
,
042012
(
2022
).
7.
H.
Abu-Shawareb
,
R.
Acree
,
P.
Adams
,
J.
Adams
,
B.
Addis
,
R.
Aden
,
P.
Adrian
,
B.
Afeyan
,
M.
Aggleton
,
L.
Aghaian
 et al, “
Lawson criterion for ignition exceeded in an inertial fusion experiment
,”
Phys. Rev. Lett.
129
,
075001
(
2022
).
8.
J.
Mlynar
,
T.
Craciunescu
,
D. R.
Ferreira
,
P.
Carvalho
,
O.
Ficker
,
O.
Grover
,
M.
Imrisek
,
J.
Svoboda
, and
J.
contributors
, “
Current research into applications of tomography for fusion diagnostics
,”
J. Fusion Energy
38
,
458
466
(
2019
).
9.
X.
Blasco
,
J. M.
Herrero
,
J.
Sanchis
, and
M.
Martínez
, “
A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization
,”
Inf. Sci.
178
,
3908
3924
(
2008
).
10.
H.
Akaike
, “
A new look at the statistical model identification
,”
IEEE Trans. Autom. Control
19
,
716
723
(
1974
).
11.
R.
Tibshirani
,
M.
Wainwright
, and
T.
Hastie
,
Statistical Learning with Sparsity: The Lasso and Generalizations
(
Chapman and Hall/CRC
,
2015
).
12.
S.
Guo
,
Z.
Wang
, and
Q.
Ruan
, “
Enhancing sparsity via lp (0<p<1) minimization for robust face recognition
,”
Neurocomputing
99
,
592
602
(
2013
).
13.
J.
Huang
and
T.
Zhang
, “
The benefit of group sparsity
,”
Ann. Stat.
38
,
1978
2004
(
2010
).
14.
M. J.
Wainwright
, “
Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso)
,”
IEEE Trans. Inf. Theory
55
,
2183
2202
(
2009
).
15.
W.
Su
,
M.
Bogdan
, and
E.
Candes
, “
False discoveries occur early on the Lasso path
,”
Ann. Stat.
45
,
2133
2150
(
2017
).
16.
G. H.
Golub
,
P. C.
Hansen
, and
D. P.
O'Leary
, “
Tikhonov regularization and total least squares
,”
SIAM J. Matrix Anal. Appl.
21
,
185
194
(
1999
).
17.
T.
Odstrčil
,
T.
Pütterich
,
M.
Odstrčil
,
A.
Gude
,
V.
Igochine
,
U.
Stroth
, and
A. U.
Team
, “
Optimized tomography methods for plasma emissivity reconstruction at the ASDEX upgrade tokamak
,”
Rev. Sci. Instrum.
87
,
123505
(
2016
).
18.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
,
3932
3937
(
2016
).
19.
S. H.
Rudy
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Data-driven discovery of partial differential equations
,”
Sci. Adv.
3
,
e1602614
(
2017
).
20.
P.
Zheng
,
T.
Askham
,
S. L.
Brunton
,
J. N.
Kutz
, and
A. Y.
Aravkin
, “
A unified framework for sparse relaxed regularized regression: SR3
,”
IEEE Access
7
,
1404
1423
(
2019
).
21.
K.
Champion
,
P.
Zheng
,
A. Y.
Aravkin
,
S. L.
Brunton
, and
J. N.
Kutz
, “
A unified sparse optimization framework to learn parsimonious physics-informed models from data
,”
IEEE Access
8
,
169259
169271
(
2020
).
22.
P.
Zheng
and
A.
Aravkin
, “
Relax-and-split method for nonconvex inverse problems
,”
Inverse Probl.
36
,
095013
(
2020
).
23.
L.
Liu
,
Y.
Shen
,
T.
Li
, and
C.
Caramanis
, “
High dimensional robust sparse regression
,” in
International Conference on Artificial Intelligence and Statistics
(
PMLR
,
2020
), pp.
411
421
.
24.
D.
Bertsimas
and
W.
Gurnee
, “
Learning sparse nonlinear dynamics via mixed-integer optimization
,”
Nonlinear Dyn.
111
,
6585
6604
(
2023
).
25.
D.
Bertsimas
and
B.
Van Parys
, “
Sparse high-dimensional regression: Exact scalable algorithms and phase transitions
,”
Ann. Stat.
48
,
300
323
(
2020
).
26.
T.
Zhang
, “
Adaptive forward-backward greedy algorithm for learning sparse representations
,”
IEEE Trans. Inf. Theory
57
,
4689
4708
(
2011
).
27.
J.
Bilmes
, “
Submodularity in machine learning and artificial intelligence
,” arXiv:2202.00132 (
2022
).
28.
A. A.
Bian
,
J. M.
Buhmann
,
A.
Krause
, and
S.
Tschiatschek
, “
Guarantees for greedy maximization of non-submodular functions with applications
,” in
International Conference on Machine Learning
(
PMLR
,
2017
), pp.
498
507
.
29.
A.
Kohara
,
K.
Okano
,
K.
Hirata
, and
Y.
Nakamura
, “
Sensor placement minimizing the state estimation mean square error: Performance guarantees of greedy solutions
,” in
59th IEEE Conference on Decision and Control (CDC)
(
IEEE
,
2020
), pp.
1706
1711
.
30.
R.
Ma
,
J.
Miao
,
L.
Niu
, and
P.
Zhang
, “
Transformed l1 regularization for learning sparse deep neural networks
,”
Neural Networks
119
,
286
298
(
2019
).
31.
K.
Kaheman
,
S. L.
Brunton
, and
J. N.
Kutz
, “
Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data
,”
Mach. Learn.: Sci. Technol.
3
,
015031
(
2022
).
32.
T.
Gale
,
E.
Elsen
, and
S.
Hooker
, “
The state of sparsity in deep neural networks
,” arXiv:1902.09574 (
2019
).
33.
S.
Ji
,
Y.
Xue
, and
L.
Carin
, “
Bayesian compressive sensing
,”
IEEE Trans. Signal Process.
56
,
2346
2356
(
2008
).
34.
I.
Castillo
,
J.
Schmidt-Hieber
, and
A.
van der Vaart
, “
Bayesian linear regression with sparse priors
,”
Ann. Stat.
43
,
1986
2018
(
2015
).
35.
S. M.
Hirsh
,
D. A.
Barajas-Solano
, and
J. N.
Kutz
, “
Sparsifying priors for Bayesian uncertainty quantification in model discovery
,”
R. Soc. Open Sci.
9
,
211823
(
2022
).
36.
D.
Bertsimas
,
J.
Pauphilet
, and
B.
Van Parys
, “
Sparse regression: Scalable algorithms and empirical performance
,”
Stat. Sci.
35
,
555
578
(
2020
).
37.
A.
Döpp
,
C.
Eberle
,
S.
Howard
,
F.
Irshad
,
J.
Lin
, and
M.
Streeter
, “
Data-driven science and machine learning methods in laser-plasma physics
,” arXiv:2212.00026 (
2022
).
38.
R.
Anirudh
,
R.
Archibald
,
M. S.
Asif
,
M. M.
Becker
,
S.
Benkadda
,
P.-T.
Bremer
,
R. H.
Budé
,
C.
Chang
,
L.
Chen
,
R.
Churchill
 et al, “
2022 review of data-driven plasma science
,” arXiv:2205.15832 (
2022
).
39.
E.
Kaiser
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
,”
Proc. R. Soc. A
474
,
20180335
(
2018
).
40.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
41.
J. N.
Kutz
,
S. L.
Brunton
,
B. W.
Brunton
, and
J. L.
Proctor
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
SIAM
,
2016
).
42.
S. L.
Brunton
,
M.
Budišić
,
E.
Kaiser
, and
J. N.
Kutz
, “
Modern Koopman theory for dynamical systems
,”
SIAM Rev.
64
,
229
340
(
2022
).
43.
S. A.
Billings
,
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains
(
John Wiley & Sons
,
2013
).
44.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
45.
P. R.
Vlachas
,
W.
Byeon
,
Z. Y.
Wan
,
T. P.
Sapsis
, and
P.
Koumoutsakos
, “
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
,”
Proc. R. Soc. A
474
,
20170844
(
2018
).
46.
M.
Raissi
,
P.
Perdikaris
, and
G.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
47.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Machine learning of linear differential equations using Gaussian processes
,”
J. Comput. Phys.
348
,
683
693
(
2017
).
48.
P.
Benner
,
S.
Gugercin
, and
K.
Willcox
, “
A survey of projection-based model reduction methods for parametric dynamical systems
,”
SIAM Rev.
57
,
483
531
(
2015
).
49.
B.
Peherstorfer
and
K.
Willcox
, “
Data-driven operator inference for nonintrusive projection-based model reduction
,”
Comput. Methods Appl. Mech. Eng.
306
,
196
215
(
2016
).
50.
E.
Qian
,
B.
Kramer
,
B.
Peherstorfer
, and
K.
Willcox
, “
Lift & Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems
,”
Physica D
406
,
132401
(
2020
).
51.
J.
Bongard
and
H.
Lipson
, “
Automated reverse engineering of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
104
,
9943
9948
(
2007
).
52.
M.
Schmidt
and
H.
Lipson
, “
Distilling free-form natural laws from experimental data
,”
Science
324
,
81
85
(
2009
).
53.
S.-M.
Udrescu
and
M.
Tegmark
, “
AI Feynman: A physics-inspired method for symbolic regression
,”
Sci. Adv.
6
,
eaay2631
(
2020
).
54.
B.
Thakur
,
A.
Sen
, and
N.
Chaubey
, “
Data driven discovery of a model equation for anode-glow oscillations in a low pressure plasma discharge
,”
Phys. Plasmas
29
,
042112
(
2022
).
55.
M.
Dam
,
M.
Brøns
,
J.
Juul Rasmussen
,
V.
Naulin
, and
J. S.
Hesthaven
, “
Sparse identification of a predator-prey system from simulation data of a convection model
,”
Phys. Plasmas
24
,
022310
(
2017
).
56.
A. A.
Kaptanoglu
,
K. D.
Morgan
,
C. J.
Hansen
, and
S. L.
Brunton
, “
Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches
,”
Phys. Rev. E
104
,
015206
(
2021
).
57.
E. P.
Alves
and
F.
Fiuza
, “
Data-driven discovery of reduced plasma physics models from fully kinetic simulations
,”
Phys. Rev. Res.
4
,
033192
(
2022
).
58.
J.
Donaghy
and
K.
Germaschewski
, “
In search of a data driven symbolic multi-fluid closure
,” arXiv:2207.06241 (
2022
).
59.
S.
Thévenin
,
N.
Valade
,
B.-J.
Gréa
,
G.
Kluth
, and
O.
Soulard
, “
Modeling compressed turbulent plasma with rapid viscosity variations
,”
Phys. Plasmas
29
,
112310
(
2022
).
60.
I.
Abramovic
,
E.
Alves
, and
M.
Greenwald
, “
Data-driven model discovery for plasma turbulence modelling
,”
J. Plasma Phys.
88
,
895880604
(
2022
).
61.
J. D.
Lore
,
S.
De Pascuale
,
M. P.
Laiu
,
B.
Russo
,
J.-S.
Park
,
J. M.
Park
,
S.
Brunton
,
J. N.
Kutz
, and
A. A.
Kaptanoglu
, “
Time-dependent SOLPS-ITER simulations of the tokamak plasma boundary for model predictive control using SINDy
,”
Nucl. Fusion
63
,
046015
(
2023
).
62.
S.
Pan
and
K.
Duraisamy
, “
Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed stability
,”
SIAM J. Appl. Dyn. Syst.
19
,
480
509
(
2020
).
63.
B.
Kramer
, “
Stability domains for quadratic-bilinear reduced-order models
,”
SIAM J. Appl. Dyn. Syst.
20
,
981
996
(
2021
).
64.
N.
Sawant
,
B.
Kramer
, and
B.
Peherstorfer
, “
Physics-informed regularization and structure preservation for learning stable reduced models from data with operator inference
,”
Comput. Methods Appl. Mech. Eng.
404
,
115836
(
2023
).
65.
A. A.
Kaptanoglu
,
J. L.
Callaham
,
A.
Aravkin
,
C. J.
Hansen
, and
S. L.
Brunton
, “
Promoting global stability in data-driven models of quadratic nonlinear dynamics
,”
Phys. Rev. Fluids
6
,
094401
(
2021
).
66.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
67.
J.
Bakarji
,
K.
Champion
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Discovering governing equations from partial measurements with deep delay autoencoders
,” arXiv:2201.05136 (
2022
).
68.
H.
Schaeffer
, “
Learning partial differential equations via data discovery and sparse optimization
,”
Proc. R. Soc. A
473
,
20160446
(
2017
).
69.
A.
Sandoz
,
V.
Ducret
,
G. A.
Gottwald
,
G.
Vilmart
, and
K.
Perron
, “
SINDy for delay-differential equations: Application to model bacterial zinc response
,”
Proc. R. Soc. A
479
,
20220556
(
2023
).
70.
A.
Klimovskaia
,
S.
Ganscha
, and
M.
Claassen
, “
Sparse regression based structure learning of stochastic reaction networks from single cell snapshot time series
,”
PLoS Comput. Biol.
12
,
e1005234
(
2016
).
71.
D. B.
Brückner
,
P.
Ronceray
, and
C. P.
Broedersz
, “
Inferring the dynamics of underdamped stochastic systems
,”
Phys. Rev. Lett.
125
,
058103
(
2020
).
72.
M.
Dai
,
T.
Gao
,
Y.
Lu
,
Y.
Zheng
, and
J.
Duan
, “
Detecting the maximum likelihood transition path from data of stochastic dynamical systems
,”
Chaos
30
,
113124
(
2020
).
73.
J. L.
Callaham
,
J.-C.
Loiseau
,
G.
Rigas
, and
S. L.
Brunton
, “
Nonlinear stochastic modelling with Langevin regression
,”
Proc. R. Soc. A
477
,
20210092
(
2021
).
74.
E.
Kaiser
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Discovering conservation laws from data for control
,” in
IEEE Conference on Decision and Control (CDC)
(
IEEE
,
2018
), pp.
6415
6421
.
75.
U.
Fasel
,
E.
Kaiser
,
J. N.
Kutz
,
B. W.
Brunton
, and
S. L.
Brunton
, “
SINDy with control: A tutorial
,” in
60th IEEE Conference on Decision and Control (CDC)
(
IEEE
,
2021
), pp.
16
21
.
76.
N. M.
Mangan
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Inferring biological networks by sparse identification of nonlinear dynamics
,”
IEEE Trans. Mol. Biol. Multi-Scale Commun.
2
,
52
63
(
2016
).
77.
K.
Kaheman
,
J. N.
Kutz
, and
S. L.
Brunton
, “
SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear dynamics
,”
Proc. R. Soc. A
476
,
20200279
(
2020
).
78.
N. M.
Mangan
,
T.
Askham
,
S. L.
Brunton
,
J. N.
Kutz
, and
J. L.
Proctor
, “
Model selection for hybrid dynamical systems via sparse regression
,”
Proc. R. Soc. A
475
,
20180534
(
2019
).
79.
G.
Thiele
,
A.
Fey
,
D.
Sommer
, and
J.
Krüger
, “
System identification of a hysteresis-controlled pump system using SINDy
,” in
24th International Conference on System Theory, Control and Computing (ICSTCC)
(
IEEE
,
2020
), pp.
457
464
.
80.
J.-C.
Loiseau
and
S. L.
Brunton
, “
Constrained sparse Galerkin regression
,”
J. Fluid Mech.
838
,
42
67
(
2018
).
81.
N. M.
Mangan
,
J. N.
Kutz
,
S. L.
Brunton
, and
J. L.
Proctor
, “
Model selection for dynamical systems via sparse regression and information criteria
,”
Proc. R. Soc. A
473
,
20170009
(
2017
).
82.
X.
Dong
,
Y.-L.
Bai
,
Y.
Lu
, and
M.
Fan
, “
An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity
,”
Nonlinear Dyn.
111
,
1485
(
2023
).
83.
G.
Tran
and
R.
Ward
, “
Exact recovery of chaotic systems from highly corrupted data
,”
Multiscale Model. Simul.
15
,
1108
1129
(
2017
).
84.
H.
Schaeffer
,
G.
Tran
, and
R.
Ward
, “
Extracting sparse high-dimensional dynamics from limited data
,”
SIAM J. Appl. Math.
78
,
3279
3295
(
2018
).
85.
C. B.
Delahunt
and
J. N.
Kutz
, “
A toolkit for data-driven discovery of governing equations in high-noise regimes
,”
IEEE Access
10
,
31210
31234
(
2022
).
86.
J.
Wentz
and
A.
Doostan
, “
Derivative-based SINDy (DSINDy): Addressing the challenge of discovering governing equations from noisy data
,” arXiv:2211.05918 (
2022
).
87.
A.
Somacal
,
Y.
Barrera
,
L.
Boechi
,
M.
Jonckheere
,
V.
Lefieux
,
D.
Picard
, and
E.
Smucler
, “
Uncovering differential equations from data with hidden variables
,”
Phys. Rev. E
105
,
054209
(
2022
).
88.
P.
Conti
,
G.
Gobat
,
S.
Fresca
,
A.
Manzoni
, and
A.
Frangi
, “
Reduced order modeling of parametrized systems through autoencoders and SINDy approach: Continuation of periodic solutions
,” arXiv:2211.06786 (
2022
).
89.
L.
Gao
and
J. N.
Kutz
, “
Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
,” arXiv:2211.10575 (
2022
).
90.
Z.
Zhao
and
Q.
Li
, “
Adaptive sampling methods for learning dynamical systems
,” in
Mathematical and Scientific Machine Learning
(
PMLR
,
2022
), pp.
335
350
.
91.
K.
Wu
and
D.
Xiu
, “
Numerical aspects for approximating governing equations using data
,”
J. Comput. Phys.
384
,
200
221
(
2019
).
92.
U.
Fasel
,
J. N.
Kutz
,
B. W.
Brunton
, and
S. L.
Brunton
, “
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
,”
Proc. R. Soc. A
478
,
20210904
(
2022
).
93.
H.
Schaeffer
and
S. G.
McCalla
, “
Sparse model selection via integral terms
,”
Phys. Rev. E
96
,
023302
(
2017
).
94.
P. A.
Reinbold
,
D. R.
Gurevich
, and
R. O.
Grigoriev
, “
Using noisy or incomplete data to discover models of spatiotemporal dynamics
,”
Phys. Rev. E
101
,
010203
(
2020
).
95.
D. A.
Messenger
and
D. M.
Bortz
, “
Weak SINDy for partial differential equations
,”
J. Comput. Phys.
443
,
110525
(
2021
).
96.
P. A.
Reinbold
,
L. M.
Kageorge
,
M. F.
Schatz
, and
R. O.
Grigoriev
, “
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
,”
Nat. Commun.
12
,
3219
(
2021
).
97.
B.
Russo
and
M. P.
Laiu
, “
Convergence of weak-SINDy surrogate models
,” arXiv:2209.15573 (
2022
).
98.
D. A.
Messenger
and
D. M.
Bortz
, “
Asymptotic consistency of the WSINDy algorithm in the limit of continuum data
,” arXiv:2211.16000 (
2022
).
99.
P.
Gelß
,
S.
Klus
,
J.
Eisert
, and
C.
Schütte
, “
Multidimensional approximation of nonlinear dynamical systems
,”
J. Comput. Nonlinear Dyn.
14
,
061006
(
2019
).
100.
A.
Goeßmann
,
M.
Götte
,
I.
Roth
,
R.
Sweke
,
G.
Kutyniok
, and
J.
Eisert
, “
Tensor network approaches for learning non-linear dynamical laws
,” arXiv:2002.12388 (
2020
).
101.
L.
Boninsegna
,
F.
Nüske
, and
C.
Clementi
, “
Sparse learning of stochastic dynamical equations
,”
J. Chem. Phys.
148
,
241723
(
2018
).
102.
B.
de Silva
,
K.
Champion
,
M.
Quade
,
J.-C.
Loiseau
,
J. N.
Kutz
, and
S.
Brunton
, “
PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data
,”
J. Open Source Software
5
,
2104
(
2020
).
103.
A. A.
Kaptanoglu
,
B. M.
de Silva
,
U.
Fasel
,
K.
Kaheman
,
A. J.
Goldschmidt
,
J.
Callaham
,
C. B.
Delahunt
,
Z. G.
Nicolaou
,
K.
Champion
,
J.-C.
Loiseau
,
J. N.
Kutz
, and
S. L.
Brunton
, “
PySINDy: A comprehensive Python package for robust sparse system identification
,”
J. Open Source Software
7
,
3994
(
2022
).
104.
A. A.
Kaptanoglu
,
L.
Zhang
,
Z. G.
Nicolaou
,
U.
Fasel
, and
S. L.
Brunton
, “
Benchmarking sparse system identification with low-dimensional chaos
,” arXiv:2302.10787 (
2023
).
105.
K.
Manohar
,
B. W.
Brunton
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
,”
IEEE Control Syst. Mag.
38
,
63
86
(
2018
).
106.
K.
Manohar
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Optimal sensor and actuator selection using balanced model reduction
,”
IEEE Trans. Autom. Control
67
,
2108
2115
(
2021
).
107.
C. J.
Schrijver
,
K.
Kauristie
,
A. D.
Aylward
,
C. M.
Denardini
,
S. E.
Gibson
,
A.
Glover
,
N.
Gopalswamy
,
M.
Grande
,
M.
Hapgood
,
D.
Heynderickx
 et al, “
Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS
,”
Adv. Space Res.
55
,
2745
2807
(
2015
).
108.
E.
Clark
,
T.
Askham
,
S. L.
Brunton
, and
J. N.
Kutz
, “
Greedy sensor placement with cost constraints
,”
IEEE Sens. J.
19
,
2642
2656
(
2018
).
109.
E.
Clark
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Sensor selection with cost constraints for dynamically relevant bases
,”
IEEE Sens. J.
20
,
11674
11687
(
2020
).
110.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
,
1289
1306
(
2006
).
111.
J.
Levesque
,
N.
Rath
,
D.
Shiraki
,
S.
Angelini
,
J.
Bialek
,
P.
Byrne
,
B.
DeBono
,
P.
Hughes
,
M.
Mauel
,
G.
Navratil
 et al, “
Multimode observations and 3D magnetic control of the boundary of a tokamak plasma
,”
Nucl. Fusion
53
,
073037
(
2013
).
112.
C.
Hansen
,
B.
Victor
,
K.
Morgan
,
T.
Jarboe
,
A.
Hossack
,
G.
Marklin
,
B.
Nelson
, and
D.
Sutherland
, “
Numerical studies and metric development for validation of magnetohydrodynamic models on the HIT-SI experiment
,”
Phys. Plasmas
22
,
056105
(
2015
).
113.
Y.
Huang
,
S.
Jiang
,
H.
Li
,
Q.
Wang
, and
L.
Chen
, “
Compressive analysis applied to radiation symmetry evaluation and optimization for laser-driven inertial confinement fusion
,”
Comput. Phys. Commun.
185
,
459
471
(
2014
).
114.
Y. J.
Fan
and
C.
Kamath
, “
A comparison of compressed sensing and sparse recovery algorithms applied to simulation data
,”
Stat., Optim. Inf. Comput.
4
,
194
213
(
2016
).
115.
N.
Xia
,
Y.
Huang
,
H.
Li
,
P.
Li
,
K.
Wang
, and
F.
Wang
, “
A novel recovery method of soft x-ray spectrum unfolding based on compressive sensing
,”
Sensors
18
,
3725
(
2018
).
116.
M. C.
Cheung
,
B.
De Pontieu
,
J.
Martínez-Sykora
,
P.
Testa
,
A. R.
Winebarger
,
A.
Daw
,
V.
Hansteen
,
P.
Antolin
,
T. D.
Tarbell
,
J.-P.
Wuelser
 et al, “
Multi-component decomposition of astronomical spectra by compressed sensing
,”
Astrophys. J.
882
,
13
(
2019
).
117.
M. K.
Georgoulis
,
D. S.
Bloomfield
,
M.
Piana
,
A. M.
Massone
,
M.
Soldati
,
P. T.
Gallagher
,
E.
Pariat
,
N.
Vilmer
,
E.
Buchlin
,
F.
Baudin
 et al, “
The flare likelihood and region eruption forecasting (FLARECAST) project: Flare forecasting in the big data & machine learning era
,”
J. Space Weather Space Clim.
11
,
39
(
2021
).
118.
S. E.
Otto
and
C. W.
Rowley
, “
Inadequacy of linear methods for minimal sensor placement and feature selection in nonlinear systems: A new approach using secants
,”
J. Nonlinear Sci.
32
,
69
(
2022
).
119.
M.
Chilenski
,
M.
Greenwald
,
Y.
Marzouk
,
N.
Howard
,
A.
White
,
J.
Rice
, and
J.
Walk
, “
Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression
,”
Nucl. Fusion
55
,
023012
(
2015
).
120.
P.
Rodriguez-Fernandez
,
N.
Howard
, and
J.
Candy
, “
Nonlinear gyrokinetic predictions of SPARC burning plasma profiles enabled by surrogate modeling
,”
Nucl. Fusion
62
,
076036
(
2022
).
121.
E.
Camporeale
,
A.
Carè
, and
J. E.
Borovsky
, “
Classification of solar wind with machine learning
,”
J. Geophys. Res.: Space Phys.
122
,
10,910
10,920
, (
2017
).
122.
R.
Shalloo
,
S.
Dann
,
J.-N.
Gruse
,
C.
Underwood
,
A.
Antoine
,
C.
Arran
,
M.
Backhouse
,
C.
Baird
,
M.
Balcazar
,
N.
Bourgeois
 et al, “
Automation and control of laser wakefield accelerators using Bayesian optimization
,”
Nat. Commun.
11
,
6355
(
2020
).
123.
E.
Schulz
,
M.
Speekenbrink
, and
A.
Krause
, “
A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
,”
J. Math. Psychol.
85
,
1
16
(
2018
).
124.
J.
Leddy
,
S.
Madireddy
,
E.
Howell
, and
S.
Kruger
, “
Single Gaussian process method for arbitrary tokamak regimes with a statistical analysis
,”
Plasma Phys. Controlled Fusion
64
,
104005
(
2022
).
125.
I. A.
Almosallam
,
M. J.
Jarvis
, and
S. J.
Roberts
, “
GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
,”
Mon. Not. R. Astron. Soc.
462
,
726
739
(
2016
).
126.
P.
Hatfield
,
S.
Rose
,
R.
Scott
,
I.
Almosallam
,
S.
Roberts
, and
M.
Jarvis
, “
Using sparse Gaussian processes for predicting robust inertial confinement fusion implosion yields
,”
IEEE Trans. Plasma Sci.
48
,
14
21
(
2019
).
127.
T.
Park
and
G.
Casella
, “
The Bayesian Lasso
,”
J. Am. Stat. Assoc.
103
,
681
686
(
2008
).
128.
C.
Guillemaut
,
M.
Lennholm
,
J.
Harrison
,
I.
Carvalho
,
D.
Valcarcel
,
R.
Felton
,
S.
Griph
,
C.
Hogben
,
R.
Lucock
,
G. F.
Matthews
,
C. P.
Von Thun
,
R. A.
Pitts
, and
S.
Wiesen
, “
Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall
,”
Plasma Phys. Controlled Fusion
59
,
045001
(
2017
).
129.
D.
Eldon
,
H.
Wang
,
L.
Wang
,
J.
Barr
,
S.
Ding
,
A.
Garofalo
,
X.
Gong
,
H.
Guo
,
A.
Järvinen
,
K.
Li
,
J.
McClenaghan
,
A.
McLean
,
C.
Samuell
,
J.
Watkins
,
D.
Weisberg
, and
Q.
Yuan
, “
An analysis of controlled detachment by seeding various impurity species in high performance scenarios on DIII-D and EAST
,”
Nucl. Mater. Energy
27
,
100963
(
2021
).
130.
T.
Ravensbergen
,
M.
van Berkel
,
A.
Perek
,
C.
Galperti
,
B. P.
Duval
,
O.
Février
,
R. J. R.
van Kampen
,
F.
Felici
,
J. T.
Lammers
,
C.
Theiler
,
J.
Schoukens
,
B.
Linehan
,
M.
Komm
,
S.
Henderson
,
D.
Brida
, and
M. R.
de Baar
, “
Real-time feedback control of the impurity emission front in tokamak divertor plasmas
,”
Nat. Commun.
12
,
1105
(
2021
).
131.
X.
Bonnin
,
W.
Dekeyser
,
R.
Pitts
, and
D.
Coster
, “
Presentation of the new SOLPS-ITER code package for tokamak plasma edge modelling
,”
Plasma Fusion Res.
11
,
1403102
(
2016
).
132.
M.
Drevlak
,
C.
Beidler
,
J.
Geiger
,
P.
Helander
, and
Y.
Turkin
, “
Optimisation of stellarator equilibria with ROSE
,”
Nucl. Fusion
59
,
016010
(
2018
).
133.
S. P.
Hirshman
,
D. A.
Spong
,
J. C.
Whitson
,
V. E.
Lynch
,
D. B.
Batchelor
,
B. A.
Carreras
, and
J. A.
Rome
, “
Transport optimization and MHD stability of a small aspect ratio toroidal hybrid stellarator
,”
Phys. Rev. Lett.
80
,
528
(
1998
).
134.
M.
Landreman
,
B.
Medasani
,
F.
Wechsung
,
A.
Giuliani
,
R.
Jorge
, and
C.
Zhu
, “
SIMSOPT: A flexible framework for stellarator optimization
,”
J. Open Source Software
6
,
3525
(
2021
).
135.
M.
Landreman
, “
An improved current potential method for fast computation of stellarator coil shapes
,”
Nucl. Fusion
57
,
046003
(
2017
).
136.
C.
Zhu
,
S. R.
Hudson
,
Y.
Song
, and
Y.
Wan
, “
New method to design stellarator coils without the winding surface
,”
Nucl. Fusion
58
,
016008
(
2017
).
137.
E.
Paul
,
M.
Landreman
,
A.
Bader
, and
W.
Dorland
, “
An adjoint method for gradient-based optimization of stellarator coil shapes
,”
Nucl. Fusion
58
,
076015
(
2018
).
138.
A. A.
Kaptanoglu
,
T.
Qian
,
F.
Wechsung
, and
M.
Landreman
, “
Permanent-magnet optimization for stellarators as sparse regression
,”
Phys. Rev. Appl.
18
,
044006
(
2022
).
139.
A. A.
Kaptanoglu
,
R.
Conlin
, and
M.
Landreman
, “
Greedy permanent magnet optimization
,”
Nucl. Fusion
63
,
036016
(
2023
).
140.
M.
Landreman
and
E.
Paul
, “
Magnetic fields with precise quasisymmetry for plasma confinement
,”
Phys. Rev. Lett.
128
,
035001
(
2022
).
141.
T.
Qian
,
M. C.
Zarnstorff
,
D.
Bishop
,
A.
Chambliss
,
A.
Dominguez
,
C.
Pagano
,
D.
Patch
, and
C.
Zhu
, “
Simpler optimized stellarators using permanent magnets
,”
Nucl. Fusion
62
,
084001
(
2022
).
142.
G.
Neilson
,
T.
Brown
,
D.
Gates
,
K.
Lu
,
M.
Zarnstorff
,
A.
Boozer
,
J.
Harris
,
O.
Meneghini
,
H.
Mynick
,
N.
Pomphrey
 et al, “
Progress toward attractive stellarators
,” Report No. PPPL-4589 (
Princeton Plasma Physics Lab.
,
Princeton, NJ
,
2011
).
143.
M.
Landreman
,
B.
Medasani
, and
C.
Zhu
, “
Stellarator optimization for good magnetic surfaces at the same time as quasisymmetry
,”
Phys. Plasmas
28
,
092505
(
2021
).
You do not currently have access to this content.