Strongly coupled systems occupying the transitional range between the Wigner crystal and fluid phases are the most dynamic constituents of the nature. Highly localized but strongly interacting elements in this phase possess enough thermal energy to trigger the transition between a variety of short to long range order phases. Nonlinear excitations are often carriers of proliferating structural modifications in the strongly coupled Yukawa systems. Well represented by laboratory dusty plasmas, these systems show explicit propagation of nonlinear shocks and solitary structures both in experiments and first principles simulations. The shorter scale length contributions remain absent at strong screening in the present approximate models, which nevertheless prescribe nonlinear solitary solutions that consequently lose their coherence in a numerical evolution of the system under the special implementation of a quasi-localized charge approximation (QLCA) formulation. The stable coherent structures self-consistently emerge following an initial transient in the numerical evolution that adapts QLCA approach to spatiotemporal domain for accessing the nonlinear excitations in the strong screening limit. The present κ1 limit of the existing Yukawa fluid models to show agreement with the experiment and molecular dynamical simulations has, therefore, been overcome, and the coherent nonlinear excitations have become characterizable up to κ2.7, before they become computationally challenging in the present implementation.

1.
F.
Peng
,
E. F.
Brown
, and
J. W.
Truran
,
Astrophys. J.
654
,
1022
(
2007
).
2.
A.
Dantan
,
J.
Marler
,
M.
Albert
,
D.
Guénot
, and
M.
Drewsen
,
Phys. Rev. Lett.
105
,
103001
(
2010
).
3.
T. C.
Killian
,
T.
Pattard
,
T.
Pohl
, and
J.
Rost
,
Phys. Rep.
449
,
77
(
2007
).
4.
X.
Wang
,
A.
Bhattacharjee
, and
S.
Hu
,
Phys. Rev. Lett.
86
,
2569
(
2001
).
5.
L.-J.
Hou
,
Y.-N.
Wang
, and
Z.
Mišković
,
Phys. Rev. E
70
,
056406
(
2004
).
6.
L.-J.
Hou
,
Z.
Mišković
,
A.
Piel
, and
M. S.
Murillo
,
Phys. Rev. E
79
,
046412
(
2009
).
7.
P.
Kaw
and
A.
Sen
,
Phys. Plasmas
5
,
3552
(
1998
).
8.
P.
Kaw
,
Phys. Plasmas
8
,
1870
(
2001
).
9.
K. I.
Golden
and
G. J.
Kalman
,
Phys. Plasmas
7
,
14
(
2000
).
10.
Z.
Donko
,
G. J.
Kalman
, and
P.
Hartmann
,
J. Phys.: Condens. Matter
20
,
413101
(
2008
).
11.
G.
Kalman
and
K.
Golden
,
Phys. Rev. A
41
,
5516
(
1990
).
12.
G. J.
Kalman
,
K. I.
Golden
,
Z.
Donko
, and
P.
Hartmann
,
J. Phys.: Conf. Ser.
11
,
254
(
2005
).
13.
K. I.
Golden
,
G. J.
Kalman
,
Z.
Donko
, and
P.
Hartmann
,
J. Phys. A
42
,
214017
(
2009
).
14.
C.-J.
Lee
and
G. J.
Kalman
,
J. Korean Phys. Soc.
58
,
448
(
2011
).
15.
G. E.
Morfill
and
A. V.
Ivlev
,
Rev. Mod. Phys.
81
,
1353
(
2009
).
16.
S. A.
Khrapak
and
H. M.
Thomas
,
Phys. Rev. E
91
,
033110
(
2015
).
17.
V.
Yaroshenko
,
V.
Nosenko
, and
G.
Morfill
,
Phys. Plasmas
17
,
103709
(
2010
).
18.
S. A.
Khrapak
,
B.
Klumov
,
L.
Couedel
, and
H. M.
Thomas
,
Phys. Plasmas
23
,
023702
(
2016
).
19.
G.
Kalman
,
M.
Rosenberg
, and
H.
DeWitt
,
Phys. Rev. Lett.
84
,
6030
(
2000
).
20.
I. I.
Frenkel
and
Â. I.
Frenkel
,
Kinetic Theory of Liquids
(
Clarendon Press
,
1946
).
21.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Rev. Lett.
84
,
6026
(
2000
).
22.
S.
Nunomura
,
S.
Zhdanov
,
D.
Samsonov
, and
G.
Morfill
,
Phys. Rev. Lett.
94
,
045001
(
2005
).
23.
C.
Yang
,
M.
Dove
,
V.
Brazhkin
, and
K.
Trachenko
,
Phys. Rev. Lett.
118
,
215502
(
2017
).
24.
S.
Sharma
,
A.
Boruah
, and
H.
Bailung
,
Phys. Rev. E
89
,
013110
(
2014
).
25.
A.
Boruah
,
S.
Sharma
,
Y.
Nakamura
, and
H.
Bailung
,
Phys. Plasmas
23
,
093704
(
2016
).
26.
P.
Kumar
and
D.
Sharma
,
Phys. Plasmas
28
,
083704
(
2021
).
27.
B.
Fornberg
,
A Practical Guide to Pseudospectral Methods
(
Cambridge University Press
,
1998
).
28.
Z.
Donkó
,
P.
Hartmann
, and
G.
Kalman
,
Phys. Plasmas
10
,
1563
(
2003
).
29.
S. A.
Khrapak
,
AIP Adv.
7
,
125026
(
2017
).
30.
P.
Bandyopadhyay
,
G.
Prasad
,
A.
Sen
, and
P.
Kaw
,
Phys. Lett. A
368
,
491
(
2007
).
31.
A. V.
Mokshin
,
I. I.
Fairushin
, and
I. M.
Tkachenko
,
Phys. Rev. E
105
,
025204
(
2022
).
32.
S.
Zhdanov
,
S.
Nunomura
,
D.
Samsonov
, and
G.
Morfill
,
Phys. Rev. E
68
,
035401
(
2003
).
33.
C.-S.
Wong
,
J.
Goree
, and
Z.
Haralson
,
IEEE Trans. Plasma Sci.
46
,
763
(
2017
).
34.
R.
Davidson
,
Methods in Nonlinear Plasma Theory
(
Elsevier
,
2012
).
35.
P. K.
Shukla
and
A.
Mamun
,
Introduction to Dusty Plasma Physics
(
CRC Press
,
2015
).
36.
M.
Rosenberg
and
G.
Kalman
,
Phys. Rev. E
56
,
7166
(
1997
).
37.
S.
Hamaguchi
,
R.
Farouki
, and
D.
Dubin
,
J. Chem. Phys.
105
,
7641
(
1996
).
38.
R.
Farouki
and
S.
Hamaguchi
,
J. Chem. Phys.
101
,
9885
(
1994
).
39.
S. E.
Cousens
,
S.
Sultana
,
I.
Kourakis
,
V. V.
Yaroshenko
,
F.
Verheest
, and
M. A.
Hellberg
,
Phys. Rev. E
86
,
066404
(
2012
).
40.
S. K.
Tiwari
,
A.
Das
,
A.
Sen
, and
P.
Kaw
,
Phys. Plasmas
22
,
033706
(
2015
).
41.
S.
Kumar
,
S. K.
Tiwari
, and
A.
Das
,
Phys. Plasmas
24
,
033711
(
2017
).
42.
A.
Mamun
and
P.
Shukla
,
Phys. Scr.
2002
,
107
(
2002
).
43.
A.
Mamun
and
P.
Shukla
,
Plasma Phys. Controlled Fusion
47
,
A1
(
2005
).
44.
E.
Coutsias
,
F.
Hansen
,
T.
Huld
,
G.
Knorr
, and
J.-P.
Lynov
,
Phys. Scr.
40
,
270
(
1989
).
45.
N.
Kabalan
,
M.
Ahmad
, and
A.
Asad
,
Adv. Math. Phys.
2020
,
1
9
.
46.
L.-L.
Tao
,
F.-P.
Wang
,
D.-N.
Gao
,
H.
Zhang
, and
W.-S.
Duan
,
J. Plasma Phys.
86
,
905860111
(
2020
).
47.
S.
Jaiswal
,
P.
Bandyopadhyay
, and
A.
Sen
,
Phys. Plasmas
21
,
053701
(
2014
).
48.
V.
Nosenko
,
S.
Nunomura
, and
J.
Goree
,
Phys. Rev. Lett.
88
,
215002
(
2002
).
49.
P.
Bandyopadhyay
,
G.
Prasad
,
A.
Sen
, and
P.
Kaw
,
Phys. Rev. Lett.
101
,
065006
(
2008
).
50.
J. K.
Hunter
and
R.
Saxton
,
SIAM J. Appl. Math.
51
,
1498
(
1991
).
51.
S. K.
Tiwari
,
A.
Das
,
P.
Kaw
, and
A.
Sen
,
Phys. Plasmas
19
,
013706
(
2012
).
52.
V.
Fortov
,
I.
Iakubov
, and
A.
Khrapak
,
Physics of Strongly Coupled Plasma
(
OUP Oxford
,
2006
), Vol.
135
.
53.
S.
Khrapak
and
L.
Couëdel
,
Phys. Rev. E
102
,
033207
(
2020
).
54.
A.
Davletov
,
F.
Kurbanov
,
Y.
Mukhametkarimov
, and
L.
Yerimbetova
,
IEEE Trans. Plasma Sci.
49
,
2000
(
2021
).
55.
S.
Khrapak
,
B.
Klumov
, and
L.
Couëdel
,
Sci. Rep.
7
,
7985
(
2017
).
56.
S.
Dalui
,
P.
Kumar
, and
D.
Sharma
,
Phys. Scr.
98
,
025606
(
2023
).
57.
S. A.
Khrapak
,
Plasma Phys. Controlled Fusion
58
,
014022
(
2015
).
You do not currently have access to this content.