Double-layer targets composed of near-critical-density carbon nanotube foams (CNFs) and solid foils have shown their advantages in laser-driven ion acceleration under high relativistic intensity. Here, we report the experimental and numerical results on the laser-accelerated proton beams from such targets under moderate relativistic intensities I5×1019W/cm2. 40-TW femtosecond laser pulses were used to irradiate CNF-based double-layer targets. Compared to single-layer targets, significant enhancements on the cutoff energy and numbers of ions were observed. It was found that the CNF layer also leads to a larger divergence angle and a more homogeneous spatial distribution profile of the proton beam. Particle-in-cell simulations reveal the reason for the enhanced proton acceleration. It is found that the lateral electric field and the strong magnetic field built by the directly accelerated electrons from the CNF layer contribute to the enlarged divergence angle.

1.
J.
Schreiber
,
F.
Bell
,
F.
Gruner
,
U.
Schramm
,
M.
Geissler
,
M.
Schnurer
,
S.
Ter-Avetisyan
,
B. M.
Hegelich
,
J.
Cobble
,
E.
Brambrink
,
J.
Fuchs
,
P.
Audebert
, and
D.
Habs
, “
Analytical model for ion acceleration by high-intensity laser pulses
,”
Phys. Rev. Lett.
97
,
045005
(
2006
).
2.
A.
Macchi
,
F.
Cattani
,
T. V.
Liseykina
, and
F.
Cornolti
, “
Laser acceleration of ion bunches at the front surface of overdense plasmas
,”
Phys. Rev. Lett.
94
,
165003
(
2005
).
3.
D.
Kong
,
G.
Zhang
,
Y.
Shou
,
S.
Xu
,
Z.
Mei
,
Z.
Cao
,
Z.
Pan
,
P.
Wang
,
G.
Qi
,
Y.
Lou
,
Z.
Ma
,
H.
Lan
,
W.
Wang
,
Y.
Li
,
P.
Rubovic
,
M.
Veselsky
,
A.
Bonasera
,
J.
Zhao
,
Y.
Geng
,
Y.
Zhao
,
C.
Fu
,
W.
Luo
,
Y.
Ma
,
X.
Yan
, and
W.
Ma
, “
High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions
,”
Matter Radiat. Extremes
7
,
064403
(
2022
).
4.
M.
Roth
,
T. E.
Cowan
,
M. H.
Key
,
S. P.
Hatchett
,
C.
Brown
,
W.
Fountain
,
J.
Johnson
,
D. M.
Pennington
,
R. A.
Snavely
,
S. C.
Wilks
,
K.
Yasuike
,
H.
Ruhl
,
F.
Pegoraro
,
S. V.
Bulanov
,
E. M.
Campbell
,
M. D.
Perry
, and
H.
Powell
, “
Fast ignition by intense laser-accelerated proton beams
,”
Phys. Rev. Lett.
86
,
436
439
(
2001
).
5.
M.
Barberio
,
M.
Sciscio
,
S.
Vallieres
,
F.
Cardelli
,
S. N.
Chen
,
G.
Famulari
,
T.
Gangolf
,
G.
Revet
,
A.
Schiavi
,
M.
Senzacqua
, and
P.
Antici
, “
Laser-accelerated particle beams for stress testing of materials
,”
Nat. Commun.
9
,
372
(
2018
).
6.
A.
Prasselsperger
,
M.
Coughlan
,
N.
Breslin
,
M.
Yeung
,
C.
Arthur
,
H.
Donnelly
,
S.
White
,
M.
Afshari
,
M.
Speicher
,
R.
Yang
,
B.
Villagomez-Bernabe
,
F. J.
Currell
,
J.
Schreiber
, and
B.
Dromey
, “
Real-time electron solvation induced by bursts of laser-accelerated protons in liquid water
,”
Phys. Rev. Lett.
127
,
186001
(
2021
).
7.
F.
Kroll
,
F.-E.
Brack
,
C.
Bernert
,
S.
Bock
,
E.
Bodenstein
,
K.
Brüchner
,
T. E.
Cowan
,
L.
Gaus
,
R.
Gebhardt
,
U.
Helbig
,
L.
Karsch
,
T.
Kluge
,
S.
Kraft
,
M.
Krause
,
E.
Lessmann
,
U.
Masood
,
S.
Meister
,
J.
Metzkes-Ng
,
A.
Nossula
,
J.
Pawelke
,
J.
Pietzsch
,
T.
Püschel
,
M.
Reimold
,
M.
Rehwald
,
C.
Richter
,
H.-P.
Schlenvoigt
,
U.
Schramm
,
M. E. P.
Umlandt
,
T.
Ziegler
,
K.
Zeil
, and
E.
Beyreuther
, “
Tumour irradiation in mice with a laser-accelerated proton beam
,”
Nat. Phys.
18
,
316
322
(
2022
).
8.
A.
Higginson
,
R. J.
Gray
,
M.
King
,
R. J.
Dance
,
S. D. R.
Williamson
,
N. M. H.
Butler
,
R.
Wilson
,
R.
Capdessus
,
C.
Armstrong
,
J. S.
Green
,
S. J.
Hawkes
,
P.
Martin
,
W. Q.
Wei
,
S. R.
Mirfayzi
,
X. H.
Yuan
,
S.
Kar
,
M.
Borghesi
,
R. J.
Clarke
,
D.
Neely
, and
P.
McKenna
, “
Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme
,”
Nat. Commun.
9
,
724
(
2018
).
9.
D.
Margarone
,
I. J.
Kim
,
J.
Psikal
,
J.
Kaufman
,
T.
Mocek
,
I. W.
Choi
,
L.
Stolcova
,
J.
Proska
,
A.
Choukourov
,
I.
Melnichuk
,
O.
Klimo
,
J.
Limpouch
,
J. H.
Sung
,
S. K.
Lee
,
G.
Korn
, and
T. M.
Jeong
, “
Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target
,”
Phys. Rev. Spec. Top. - Accel. Beams
18
,
071304
(
2015
).
10.
P.
Hilz
,
T. M.
Ostermayr
,
A.
Huebl
,
V.
Bagnoud
,
B.
Borm
,
M.
Bussmann
,
M.
Gallei
,
J.
Gebhard
,
D.
Haffa
,
J.
Hartmann
,
T.
Kluge
,
F. H.
Lindner
,
P.
Neumayr
,
C. G.
Schaefer
,
U.
Schramm
,
P. G.
Thirolf
,
T. F.
Rosch
,
F.
Wagner
,
B.
Zielbauer
, and
J.
Schreiber
, “
Isolated proton bunch acceleration by a petawatt laser pulse
,”
Nat. Commun.
9
,
423
(
2018
).
11.
M.
Passoni
,
F. M.
Arioli
,
L.
Cialfi
,
D.
Dellasega
,
L.
Fedeli
,
A.
Formenti
,
A. C.
Giovannelli
,
A.
Maffini
,
F.
Mirani
,
A.
Pazzaglia
,
A.
Tentori
,
D.
Vavassori
,
M.
Zavelani-Rossi
, and
V.
Russo
, “
Advanced laser-driven ion sources and their applications in materials and nuclear science
,”
Plasma Phys. Controlled Fusion
62
,
014022
(
2020
).
12.
D.
Levy
,
C.
Bernert
,
M.
Rehwald
,
I. A.
Andriyash
,
S.
Assenbaum
,
T.
Kluge
,
E.
Kroupp
,
L.
Obst-Huebl
,
R.
Pausch
,
A.
Schulze-Makuch
,
K.
Zeil
,
U.
Schramm
, and
V.
Malka
, “
Laser-plasma proton acceleration with a combined gas-foil target
,”
New J. Phys.
22
,
103068
(
2020
).
13.
Y.
Shou
,
H.
Lu
,
R.
Hu
,
C.
Lin
,
H.
Wang
,
M.
Zhou
,
X.
He
,
J. E.
Chen
, and
X.
Yan
, “
Near-diffraction-limited laser focusing with a near-critical density plasma lens
,”
Opt. Lett.
41
,
139
142
(
2016
).
14.
V.
Horny
,
S. N.
Chen
,
X.
Davoine
,
V.
Lelasseux
,
L.
Gremillet
, and
J.
Fuchs
, “
High-flux neutron generation by laser-accelerated ions from single- and double-layer targets
,”
Sci. Rep.
12
,
19767
(
2022
).
15.
Y.
Shou
,
D.
Wang
,
P.
Wang
,
J.
Liu
,
Z.
Cao
,
Z.
Mei
,
S.
Xu
,
Z.
Pan
,
D.
Kong
,
G.
Qi
,
Z.
Liu
,
Y.
Liang
,
Z.
Peng
,
Y.
Gao
,
S.
Chen
,
J.
Zhao
,
Y.
Zhao
,
H.
Xu
,
J.
Zhao
,
Y.
Wu
,
X.
Yan
, and
W.
Ma
, “
High-efficiency generation of narrowband soft x rays from carbon nanotube foams irradiated by relativistic femtosecond lasers
,”
Opt. Lett.
46
,
3969
3972
(
2021
).
16.
H. Y.
Wang
,
C.
Lin
,
Z. M.
Sheng
,
B.
Liu
,
S.
Zhao
,
Z. Y.
Guo
,
Y. R.
Lu
,
X. T.
He
,
J. E.
Chen
, and
X. Q.
Yan
, “
Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens
,”
Phys. Rev. Lett.
107
,
265002
(
2011
).
17.
H. Y.
Wang
,
X. Q.
Yan
,
J. E.
Chen
,
X. T.
He
,
W. J.
Ma
,
J. H.
Bin
,
J.
Schreiber
,
T.
Tajima
, and
D.
Habs
, “
Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse
,”
Phys. Plasmas
20
,
013101
(
2013
).
18.
I.
Prencipe
,
J.
Fuchs
,
S.
Pascarelli
,
D. W.
Schumacher
,
R. B.
Stephens
,
N. B.
Alexander
,
R.
Briggs
,
M.
Büscher
,
M. O.
Cernaianu
,
A.
Choukourov
,
M.
De Marco
,
A.
Erbe
,
J.
Fassbender
,
G.
Fiquet
,
P.
Fitzsimmons
,
C.
Gheorghiu
,
J.
Hund
,
L. G.
Huang
,
M.
Harmand
,
N. J.
Hartley
,
A.
Irman
,
T.
Kluge
,
Z.
Konopkova
,
S.
Kraft
,
D.
Kraus
,
V.
Leca
,
D.
Margarone
,
J.
Metzkes
,
K.
Nagai
,
W.
Nazarov
,
P.
Lutoslawski
,
D.
Papp
,
M.
Passoni
,
A.
Pelka
,
J. P.
Perin
,
J.
Schulz
,
M.
Smid
,
C.
Spindloe
,
S.
Steinke
,
R.
Torchio
,
C.
Vass
,
T.
Wiste
,
R.
Zaffino
,
K.
Zeil
,
T.
Tschentscher
,
U.
Schramm
, and
T. E.
Cowan
, “
Targets for high repetition rate laser facilities: Needs, challenges and perspectives
,”
High Power Laser Sci. Eng.
5
,
e17
(
2017
).
19.
M.
Passoni
,
A.
Zani
,
A.
Sgattoni
,
D.
Dellasega
,
A.
Macchi
,
I.
Prencipe
,
V.
Floquet
,
P.
Martin
,
T. V.
Liseykina
, and
T.
Ceccotti
, “
Energetic ions at moderate laser intensities using foam-based multi-layered targets
,”
Plasma Phys. Controlled Fusion
56
,
045001
(
2014
).
20.
M.
Passoni
,
A.
Sgattoni
,
I.
Prencipe
,
L.
Fedeli
,
D.
Dellasega
,
L.
Cialfi
,
I. W.
Choi
,
I. J.
Kim
,
K. A.
Janulewicz
,
H. W.
Lee
,
J. H.
Sung
,
S. K.
Lee
, and
C. H.
Nam
, “
Toward high-energy laser-driven ion beams: Nanostructured double-layer targets
,”
Phys. Rev. Accel. Beams
19
,
061301
(
2016
).
21.
I.
Prencipe
,
A.
Sgattoni
,
D.
Dellasega
,
L.
Fedeli
,
L.
Cialfi
,
I. W.
Choi
,
I. J.
Kim
,
K. A.
Janulewicz
,
K. F.
Kakolee
,
H. W.
Lee
,
J. H.
Sung
,
S. K.
Lee
,
C. H.
Nam
, and
M.
Passoni
, “
Development of foam-based layered targets for laser-driven ion beam production
,”
Plasma Phys. Controlled Fusion
58
,
034019
(
2016
).
22.
I.
Prencipe
,
J.
Metzkes-Ng
,
A.
Pazzaglia
,
C.
Bernert
,
D.
Dellasega
,
L.
Fedeli
,
A.
Formenti
,
M.
Garten
,
T.
Kluge
,
S.
Kraft
,
A. L.
Garcia
,
A.
Maffini
,
L.
Obst-Huebl
,
M.
Rehwald
,
M.
Sobiella
,
K.
Zeil
,
U.
Schramm
,
T. E.
Cowan
, and
M.
Passoni
, “
Efficient laser-driven proton and bremsstrahlung generation from cluster-assembled foam targets
,”
New J. Phys.
23
,
093015
(
2021
).
23.
Y.
Shou
,
P.
Wang
,
S. G.
Lee
,
Y. J.
Rhee
,
H. W.
Lee
,
J. W.
Yoon
,
J. H.
Sung
,
S. K.
Lee
,
Z.
Pan
,
D.
Kong
,
Z.
Mei
,
J.
Liu
,
S.
Xu
,
Z.
Deng
,
W.
Zhou
,
T.
Tajima
,
I. W.
Choi
,
X.
Yan
,
C. H.
Nam
, and
W.
Ma
, “
Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma
,”
Nat. Photonics
17
,
137
142
(
2023
).
24.
J. H.
Bin
,
W. J.
Ma
,
H. Y.
Wang
,
M. J.
Streeter
,
C.
Kreuzer
,
D.
Kiefer
,
M.
Yeung
,
S.
Cousens
,
P. S.
Foster
,
B.
Dromey
,
X. Q.
Yan
,
R.
Ramis
,
J.
Meyer-ter-Vehn
,
M.
Zepf
, and
J.
Schreiber
, “
Ion acceleration using relativistic pulse shaping in near-critical-density plasmas
,”
Phys. Rev. Lett.
115
,
064801
(
2015
).
25.
J. H.
Bin
,
M.
Yeung
,
Z.
Gong
,
H. Y.
Wang
,
C.
Kreuzer
,
M. L.
Zhou
,
M. J. V.
Streeter
,
P. S.
Foster
,
S.
Cousens
,
B.
Dromey
,
J.
Meyer-Ter-Vehn
,
M.
Zepf
, and
J.
Schreiber
, “
Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma
,”
Phys. Rev. Lett.
120
,
074801
(
2018
).
26.
W. J.
Ma
,
I. J.
Kim
,
J. Q.
Yu
,
I. W.
Choi
,
P. K.
Singh
,
H. W.
Lee
,
J. H.
Sung
,
S. K.
Lee
,
C.
Lin
,
Q.
Liao
,
J. G.
Zhu
,
H. Y.
Lu
,
B.
Liu
,
H. Y.
Wang
,
R. F.
Xu
,
X. T.
He
,
J. E.
Chen
,
M.
Zepf
,
J.
Schreiber
,
X. Q.
Yan
, and
C. H.
Nam
, “
Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil
,”
Phys. Rev. Lett.
122
,
014803
(
2019
).
27.
P.
Wang
,
Z.
Gong
,
S. G.
Lee
,
Y.
Shou
,
Y.
Geng
,
C.
Jeon
,
I. J.
Kim
,
H. W.
Lee
,
J. W.
Yoon
,
J. H.
Sung
,
S. K.
Lee
,
D.
Kong
,
J.
Liu
,
Z.
Mei
,
Z.
Cao
,
Z.
Pan
,
I. W.
Choi
,
X.
Yan
,
C. H.
Nam
, and
W.
Ma
, “
Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity
,”
Phys. Rev. X
11
,
021049
(
2021
).
28.
F.
Schillaci
,
L.
Pommarel
,
F.
Romano
,
G.
Cuttone
,
M.
Costa
,
D.
Giove
,
M.
Maggiore
,
A. D.
Russo
,
V.
Scuderi
,
V.
Malka
,
B.
Vauzour
,
A.
Flacco
, and
G. A. P.
Cirrone
, “
Characterization of the ELIMED permanent magnets quadrupole system prototype with laser-driven proton beams
,”
J. Instrum.
11
,
T07005
(
2016
).
29.
J.
Bin
,
L.
Obst-Huebl
,
J. H.
Mao
,
K.
Nakamura
,
L. D.
Geulig
,
H.
Chang
,
Q.
Ji
,
L.
He
,
J.
De Chant
,
Z.
Kober
,
A. J.
Gonsalves
,
S.
Bulanov
,
S. E.
Celniker
,
C. B.
Schroeder
,
C. G. R.
Geddes
,
E.
Esarey
,
B. A.
Simmons
,
T.
Schenkel
,
E. A.
Blakely
,
S.
Steinke
, and
A. M.
Snijders
, “
A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline
,”
Sci. Rep.
12
,
1484
(
2022
).
30.
L.
Fedeli
,
A.
Formenti
,
A.
Pazzaglia
,
F. M.
Arioli
,
A.
Tentori
, and
M.
Passoni
, “
Enhanced laser-driven hadron sources with nanostructured double-layer targets
,”
New J. Phys.
22
,
033045
(
2020
).
31.
Y. X.
Geng
,
D.
Wu
,
W.
Yu
,
Z. M.
Sheng
,
S.
Fritzsche
,
Q.
Liao
,
M. J.
Wu
,
X. H.
Xu
,
D. Y.
Li
,
W. J.
Ma
,
H. Y.
Lu
,
Y. Y.
Zhao
,
X. T.
He
,
J. E.
Chen
,
C.
Lin
, and
X. Q.
Yan
, “
Proton beams from intense laser-solid interaction: Effects of the target materials
,”
Matter Radiat. Extremes
5
,
064402
(
2020
).
32.
Y.
Shou
,
D.
Wang
,
P.
Wang
,
J.
Liu
,
Z.
Cao
,
Z.
Mei
,
Y.
Geng
,
J.
Zhu
,
Q.
Liao
,
Y.
Zhao
,
K.
Zhu
,
C.
Lin
,
H.
Lu
,
W.
Ma
, and
X.
Yan
, “
Automated positioning of transparent targets using defocusing method in a laser proton accelerator
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
927
,
236
239
(
2019
).
33.
P.
Wang
,
G.
Qi
,
Z.
Pan
,
D.
Kong
,
Y.
Shou
,
J.
Liu
,
Z.
Cao
,
Z.
Mei
,
S.
Xu
,
Z.
Liu
,
S.
Chen
,
Y.
Gao
,
J.
Zhao
, and
W.
Ma
, “
Fabrication of large-area uniform carbon nanotube foams as near-critical-density targets for laser–plasma experiments
,”
High Power Laser Sci. Eng.
9
,
e29
(
2021
).
34.
X. H.
Xu
,
Q.
Liao
,
M. J.
Wu
,
Y. X.
Geng
,
D. Y.
Li
,
J. G.
Zhu
,
C. C.
Li
,
R. H.
Hu
,
Y. R.
Shou
,
Y. H.
Chen
,
H. Y.
Lu
,
W. J.
Ma
,
Y. Y.
Zhao
,
K.
Zhu
,
C.
Lin
, and
X. Q.
Yan
, “
Detection and analysis of laser driven proton beams by calibrated Gafchromic HD-V2 and MD-V3 radiochromic films
,”
Rev. Sci. Instrum.
90
,
033306
(
2019
).
35.
S.
Augst
,
D.
Strickland
,
D. D.
Meyerhofer
,
S. L.
Chin
, and
J. H.
Eberly
, “
Tunneling ionization of noble gases in a high-intensity laser field
,”
Phys. Rev. Lett.
63
,
2212
2215
(
1989
).
36.
J. H.
Bin
,
W. J.
Ma
,
K.
Allinger
,
H. Y.
Wang
,
D.
Kiefer
,
S.
Reinhardt
,
P.
Hilz
,
K.
Khrennikov
,
S.
Karsch
,
X. Q.
Yan
,
F.
Krausz
,
T.
Tajima
,
D.
Habs
, and
J.
Schreiber
, “
On the small divergence of laser-driven ion beams from nanometer thick foils
,”
Phys. Plasmas
20
,
073113
(
2013
).
37.
A. X.
Li
,
C. Y.
Qin
,
H.
Zhang
,
S.
Li
,
L. L.
Fan
,
Q. S.
Wang
,
T. J.
Xu
,
N. W.
Wang
,
L. H.
Yu
,
Y.
Xu
,
Y. Q.
Liu
,
C.
Wang
,
X. L.
Wang
,
Z. X.
Zhang
,
X. Y.
Liu
,
P. L.
Bai
,
Z. B.
Gan
,
X. B.
Zhang
,
X. B.
Wang
,
C.
Fan
,
Y. J.
Sun
,
Y. H.
Tang
,
B.
Yao
,
X. Y.
Liang
,
Y. X.
Leng
,
B. F.
Shen
,
L. L.
Ji
, and
R. X.
Li
, “
Acceleration of 60 MeV proton beams in the commissioning experiment of SULF-10 PW laser
,”
High Power Laser Sci. Eng.
10
,
1
20
(
2022
).
38.
D. Y.
Li
,
T.
Yang
,
M. J.
Wu
,
H.
Cheng
,
Y. Z.
Li
,
Y. D.
Xia
,
Y.
Yan
,
Y. X.
Geng
,
Y. Y.
Zhao
,
C.
Lin
, and
X. Q.
Yan
, “
Manipulation of laser-accelerated proton beam spatial distribution by laser machined microstructure targets
,”
Phys. Plasmas
28
,
113101
(
2021
).
39.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM – The stopping and range of ions in matter (2010)
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
1823
(
2010
).
40.
M.
Schollmeier
,
M.
Geissel
,
A. B.
Sefkow
, and
K. A.
Flippo
, “
Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams
,”
Rev. Sci. Instrum.
85
,
043305
(
2014
).
41.
J.
Fuchs
,
P.
Antici
,
E.
d'Humières
,
E.
Lefebvre
,
M.
Borghesi
,
E.
Brambrink
,
C. A.
Cecchetti
,
M.
Kaluza
,
V.
Malka
,
M.
Manclossi
,
S.
Meyroneinc
,
P.
Mora
,
J.
Schreiber
,
T.
Toncian
,
H.
Pépin
, and
P.
Audebert
, “
Laser-driven proton scaling laws and new paths towards energy increase
,”
Nat. Phys.
2
,
48
54
(
2005
).
42.
T. D.
Arber
,
K.
Bennett
,
C. S.
Brady
,
A.
Lawrence-Douglas
,
M. G.
Ramsay
,
N. J.
Sircombe
,
P.
Gillies
,
R. G.
Evans
,
H.
Schmitz
,
A. R.
Bell
, and
C. P.
Ridgers
, “
Contemporary particle-in-cell approach to laser-plasma modelling
,”
Plasma Phys. Controlled Fusion
57
,
113001
(
2015
).
43.
A.
Pukhov
,
Z. M.
Sheng
, and
J.
Meyer-ter-Vehn
, “
Particle acceleration in relativistic laser channels
,”
Phys. Plasmas
6
,
2847
2854
(
1999
).
44.
W. P.
Wang
,
H.
Dong
,
Z. Y.
Shi
,
Y. X.
Leng
,
R. X.
Li
, and
Z. Z.
Xu
, “
Collimated particle acceleration by vortex laser-induced self-structured ‘plasma lens
’,”
Appl. Phys. Lett.
121
,
214102
(
2022
).
45.
M.
Nakatsutsumi
,
Y.
Sentoku
,
A.
Korzhimanov
,
S. N.
Chen
,
S.
Buffechoux
,
A.
Kon
,
B.
Atherton
,
P.
Audebert
,
M.
Geissel
,
L.
Hurd
,
M.
Kimmel
,
P.
Rambo
,
M.
Schollmeier
,
J.
Schwarz
,
M.
Starodubtsev
,
L.
Gremillet
,
R.
Kodama
, and
J.
Fuchs
, “
Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons
,”
Nat. Commun.
9
,
280
(
2018
).
46.
D. Y.
Li
,
X. H.
Xu
,
T.
Yang
,
M. J.
Wu
,
Y. F.
Zhang
,
H.
Cheng
,
X. Y.
Hu
,
Y. X.
Geng
,
J. G.
Zhu
,
Y. Y.
Zhao
,
K.
Zhu
,
W. J.
Ma
,
C.
Lin
, and
X. Q.
Yan
, “
Influence factors of resolution in laser accelerated proton radiography and image deblurring
,”
AIP Adv.
11
,
085316
(
2021
).
47.
J.
Han
,
Z.
Mei
,
C.
Lu
,
J.
Qian
,
Y.
Liang
,
X.
Sun
,
Z.
Pan
,
D.
Kong
,
S.
Xu
,
Z.
Liu
,
Y.
Gao
,
G.
Qi
,
Y.
Shou
,
S.
Chen
,
Z.
Cao
,
Y.
Zhao
,
C.
Lin
,
Y.
Zhao
,
Y.
Geng
,
J.
Chen
,
X.
Yan
,
W.
Ma
, and
G.
Yang
, “
Ultra-high dose rate FLASH irradiation induced radio-resistance of normal fibroblast cells can be enhanced by hypoxia and mitochondrial dysfunction resulting from loss of cytochrome c
,”
Front. Cell Dev. Biol.
9
,
672929
(
2021
).
You do not currently have access to this content.