Disruption prediction and avoidance is a critical need for next-step tokamaks, such as ITER. Disruption Event Characterization and Forecasting (DECAF) research fully automates analysis of tokamak data to determine chains of events that lead to disruptions and to forecast their evolution allowing sufficient time for mitigation or complete avoidance of the disruption. Disruption event chains related to local rotating or global magnetohydrodynamic (MHD) modes and vertical instability are examined with warnings issued for many off-normal physics events, including density limits, plasma dynamics, confinement transitions, and profile variations. Along with Greenwald density limit evaluation, a local radiative island power balance theory is evaluated and compared to the observation of island growth. Automated decomposition and analysis of rotating tearing modes produce physical event chains leading to disruptions. A total MHD state warning model comprised of 15 separate criteria produces a disruption forecast about 180 ms before a standard locked mode detector warning. Single DECAF event analyses have begun on KSTAR, MAST, and NSTX/-U databases with thousands of shot seconds of device operation using from 0.5 to 1 × 106 tested sample times per device. An initial multi-device database comparison illustrates a highly important result that plasma disruptivity does not need to increase as βN increases. Global MHD instabilities, such as resistive wall modes (RWMs), can give the briefest time period of warning before disruption compared to other physics events. In an NSTX database with unstable RWMs, the mode onset, loss of boundary and current control, and disruption event warnings are found in all cases and vertical displacement events are found in 91% of cases. An initial time-dependent reduced physics model of kinetic RWM stabilization created to forecast the disruption chain predicts instability 84% of the time for experimentally unstable cases with a relatively low false positive rate. Instances of the disruption event chain analysis illustrate dynamics including H–L back transitions for rotating MHD and global RWM triggering events. Disruption warnings are issued with sufficient time before the disruption (on transport timescales) to potentially allow active profile control for disruption avoidance, active mode control, or mitigation.

1.
T. C.
Hender
,
J. C.
Wesley
,
J. M.
Bialek
,
A.
Bondeson
,
A. H.
Boozer
,
R. J.
Buttery
,
A.
Garofalo
,
T. P.
Goodman
,
R. S.
Granetz
,
Y.
Gribov
 et al.,
Nucl. Fusion
47
,
S128
(
2007
).
2.
N. W.
Eidietis
,
S. P.
Gerhardt
,
R. S.
Granetz
,
Y.
Kawano
,
M.
Lehnen
,
J. B.
Lister
,
G.
Pautasso
,
V.
Riccardo
,
R. L.
Tanna
,
A. J.
Thornton
, and
ITPA Disruption Database Participants
,
Nucl. Fusion
55
,
063030
(
2015
).
3.
M.
Sugihara
,
S.
Putvinski
,
D.
Campbell
,
S.
Carpentier-Chouchana
,
F.
Escourbiac
,
S.
Gerasimov
,
Y.
Gribov
,
T.
Hender
,
T.
Hirai
,
K.
Ioki
 et al., in
Proceedings of the 24th International Conference on Fusion Energy
,
San Diego, CA
,
2012
.
4.
S. A.
Sabbagh
,
J. W.
Berkery
,
Y. S.
Park
,
J. H.
Ahn
,
Y.
Jiang
,
J. D.
Riquezes
,
R. E.
Bell
,
M. D.
Boyer
,
B. P.
LeBlanc
,
C. E.
Myers
 et al., in
Proceedings of the 27th International Conference on Fusion Energy
,
Gandhinagar, India
,
2018
.
5.
S. A.
Sabbagh
,
J. W.
Berkery
,
Y. S.
Park
,
J. H.
Ahn
,
Y.
Jiang
,
J. D.
Riquezes
,
J.
Butt
,
J.
Bialek
,
J. G.
Bak
,
M. J.
Choi
 et al., in
Proceedings of 28th International Conference on Fusion Energy
(
IAEA
,
2021
), Paper No. IAEA-CN-286/1025.
6.
P. C.
deVries
,
M. F.
Johnson
,
B.
Alper
,
P.
Buratti
,
T. C.
Hender
,
H. R.
Koslowski
,
V.
Riccardo
, and
JET-EFDA Contributors
,
Nucl. Fusion
51
,
053018
(
2011
).
7.
P. C.
de Vries
,
M. F.
Johnson
,
I.
Segui
, and
JET EFDA Contributors
,
Nucl. Fusion
49
,
055011
(
2009
).
8.
P. C.
de Vries
,
M.
Baruzzo
,
G. M. D.
Hogeweij
,
S.
Jachmich
,
E.
Joffrin
,
P. J.
Lomas
,
G. F.
Matthews
,
A.
Murari
,
I.
Nunes
,
T.
Pütterich
,
C.
Reux
,
J.
Vega
, and
JET-EFDA Contributors
,
Phys. Plasmas
21
,
056101
(
2014
).
9.
B.
Cannas
,
P. C.
de Vries
,
A.
Fanni
,
A.
Murari
,
A.
Pau
,
G.
Sias
, and
JET Contributors
,
Plasma Phys. Controlled Fusion
57
,
125003
(
2015
).
10.
M.
Maraschek
,
A.
Gude
,
V.
Igochine
,
H.
Zohm
,
E.
Alessi
,
M.
Bernert
,
C.
Cianfarani
,
S.
Coda
,
B.
Duval
,
B.
Esposito
 et al.,
Plasma Phys. Controlled Fusion
60
,
014047
(
2018
).
11.
D.
Humphreys
,
G.
Ambrosino
,
P.
de Vries
,
F.
Felici
,
S. H.
Kim
,
G.
Jackson
,
A.
Kallenbach
,
E.
Kolemen
,
J.
Lister
,
D.
Moreau
 et al.,
Phys. Plasmas
22
,
021806
(
2015
).
12.
S. A.
Sabbagh
,
R. E.
Bell
,
J. E.
Menard
,
D. A.
Gates
,
A. C.
Sontag
,
J. M.
Bialek
,
B. P.
LeBlanc
,
F. M.
Levinton
,
K.
Tritz
, and
H.
Yuh
,
Phys. Rev. Lett.
97
,
045004
(
2006
).
13.
M.
Ono
,
S. M.
Kaye
,
Y.-K. M.
Peng
,
G.
Barnes
,
W.
Blanchard
,
M. D.
Carter
,
J.
Chrzanowski
,
L.
Dudek
,
R.
Ewig
,
D.
Gates
 et al.,
Nucl. Fusion
40
,
557
(
2000
).
14.
C. E.
Myers
,
N. W.
Eidietis
,
S. N.
Gerasimov
,
S. P.
Gerhardt
,
R. S.
Granetz
,
T. C.
Hender
,
G.
Pautasso
, and
JET Contributors
,
Nucl. Fusion
58
,
016050
(
2018
).
15.
S. P.
Gerhardt
,
D. S.
Darrow
,
R. E.
Bell
,
B. P.
LeBlanc
,
J. E.
Menard
,
D.
Mueller
,
A. L.
Roquemore
,
S. A.
Sabbagh
,
H.
Yuh
 et al.,
Nucl. Fusion
53
,
063021
(
2013
).
16.
F.
Troyon
and
R.
Gruber
,
Phys. Lett.
110
,
29
(
1985
).
17.
J. W.
Berkery
,
S. A.
Sabbagh
,
R. E.
Bell
,
S. P.
Gerhardt
,
B. P.
LeBlanc
, and
J. E.
Menard
,
Nucl. Fusion
55
,
123007
(
2015
).
18.
M.
Greenwald
,
J. L.
Terry
,
S. M.
Wolfe
,
S.
Ejima
,
M. G.
Bell
,
S. M.
Kaye
, and
G. H.
Neilson
,
Nucl. Fusion
28
,
2199
(
1988
).
19.
T.
Eich
,
R. J.
Goldston
,
A.
Kallenbach
,
B.
Sieglin
, and
H. J.
Sun
,
ASDEX Upgrade Team, and JET Contributors
,
Nucl. Fusion
58
,
034001
(
2018
).
20.
D. A.
Gates
and
L.
Delgado-Aparicio
,
Phys. Rev. Lett.
108
,
165004
(
2012
).
21.
Q.
Teng
,
D. P.
Brennan
,
L.
Delgado-Aparicio
,
D. A.
Gates
,
J.
Swerdlow
, and
R. B.
White
,
Nucl. Fusion
56
,
106001
(
2016
).
22.
D. E.
Post
,
R. V.
Jensen
,
C. B.
Tarter
,
W. H.
Grasberger
, and
W. E.
Lokke
,
At. Data Nucl. Data Tables
20
,
397
(
1977
).
23.
R.
Fitzpatrick
,
Nucl. Fusion
33
,
1049
(
1993
).
24.
Y. S.
Park
,
S. A.
Sabbagh
,
J. H.
Ahn
,
J. W.
Berkery
,
Y.
Jiang
,
J. M.
Bialek
,
J.
Kim
,
H. S.
Han
,
S. H.
Hahn
,
Y. M.
Jeon
 et al., in
Proceedings of 27th International Conference on Fusion Energy
,
Gandhinagar, India
,
2018
.
25.
Y.
Jiang
,
S. A.
Sabbagh
,
Y. S.
Park
,
J. W.
Berkery
,
J. H.
Ahn
,
J. D.
Riquezes
,
J. G.
Bak
,
W. H.
Ko
,
J.
Ko
,
J. H.
Lee
 et al.,
Nucl. Fusion
61
,
116033
(
2021
).
26.
A.
Bondeson
and
D.
Ward
,
Phys. Rev. Lett.
72
,
2709
(
1994
).
27.
J. W.
Berkery
,
S. A.
Sabbagh
,
R.
Betti
,
B.
Hu
,
R. E.
Bell
,
S. P.
Gerhardt
,
J.
Manickam
, and
K.
Tritz
,
Phys. Rev. Lett.
104
,
035003
(
2010
).
28.
S. A.
Sabbagh
,
J. W.
Berkery
,
R. E.
Bell
,
J. M.
Bialek
,
S. P.
Gerhardt
,
J. E.
Menard
,
R.
Betti
,
D. A.
Gates
,
B.
Hu
,
O. N.
Katsuro-Hopkins
 et al.,
Nucl. Fusion
50
,
025020
(
2010
).
29.
J. W.
Berkery
,
S. A.
Sabbagh
,
R. E.
Bell
,
S. P.
Gerhardt
, and
B. P.
LeBlanc
,
Phys. Plasmas
24
,
056103
(
2017
).
30.
J. W.
Berkery
,
S. A.
Sabbagh
,
A.
Balbaky
,
R. E.
Bell
,
R.
Betti
,
A.
Diallo
,
S. P.
Gerhard
,
B. P.
LeBlanc
,
J.
Manickam
,
J. E.
Menard
, and
M.
Podestà
,
Phys. Plasmas
21
,
056112
(
2014
).
31.
W.
Ko
,
H.
Lee
,
D.
Seo
, and
M.
Kwon
,
Rev. Sci. Instrum.
81
,
10D740
(
2010
).
32.
B.
Stratton
,
R. J.
Fonck
,
K. P.
Jaehnig
,
N.
Schechtman
, and
E. J.
Synakowski
, in
Proceedings of the IAEA Technical Committee Meeting on Time Resolved Two- and Three-Dimensional Plasma Diagnostics, Najoya, Japan
(
IAEA
,
Vienna
,
1991
).
33.
F.
Imbeaux
,
S. D.
Pinches
,
J. B.
Lister
,
Y.
Buravand
,
T.
Casper
,
B.
Duval
,
B.
Guillerminet
,
M.
Hosokawa
,
W.
Houlberg
,
P.
Huynh
 et al.,
Nucl. Fusion
55
,
123006
(
2015
).
34.
F.
Chollet
,
Deep Learning with Python
(
Manning Publications Co
.,
2018
).
35.
A.
Piccione
,
J. W.
Berkery
,
S. A.
Sabbagh
, and
Y.
Andreopoulos
,
Nucl. Fusion
60
,
046033
(
2020
).
36.
A.
Piccione
,
J. W.
Berkery
,
S. A.
Sabbagh
, and
Y.
Andreopoulos
,
Nucl. Fusion
62
,
036002
(
2022
).
37.
B.
Friedland
,
Control System Design: An Introduction to State-Space Methods
(
Dover Publications, Inc
.,
1986
).
38.
S. A.
Sabbagh
and
J. W.
Berkery
, “Disruption event characterization and forecasting in tokamaks,” (
2023
), see http://arks.princeton.edu/ark:/88435/dsp018p58pg29j.
You do not currently have access to this content.