Recent experimental and numerical results demonstrates that the interfacial motion of a liner Z-pinch during the early stage of implosion may be controlled by the coupled effects of magneto-Rayleigh–Taylor (MRT), sausage, and kink instabilities. However, previous treatments of sausage instability have not considered the mechanical properties of the liner material. In this paper, we present an analytical model that allows us to study the effects of liner viscosity and elasticity on the coupling effects of MRT and sausage instabilities, and we further assume that the wavelengths are much smaller than the liner thickness by neglecting the feedthrough effect. The dispersion relations are analyzed. It is found that viscosity suppresses short-wavelength perturbations, and longer wavelengths are needed to achieve the fastest growing mode as the viscosity grows. Elasticity also strongly suppresses short-wavelength perturbations and eventually leads to the appearance of a cutoff wavenumber beyond which the interface always remains stable. In particular, the present approach provides the basis for the development of a more general theory that would also include magnetohydrodynamic instabilities and would allow a more accurate description of liner motion.

1.
S. A.
Slutz
,
M. C.
Herrmann
,
R. A.
Vesey
,
A. B.
Sefkow
,
D. B.
Sinars
,
D. C.
Rovang
,
K. J.
Peterson
, and
M. E.
Cuneo
, “
Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
,”
Phys. Plasmas
17
,
056303
(
2010
).
2.
D. B.
Sinars
,
S. A.
Slutz
,
M. C.
Herrmann
,
R. D.
McBride
,
M. E.
Cuneo
,
K. J.
Peterson
,
R. A.
Vesey
,
C.
Nakhleh
,
B. E.
Blue
,
K.
Killebrew
,
D.
Schroen
,
K.
Tomlinson
,
A. D.
Edens
,
M. R.
Lopez
,
I. C.
Smith
,
J.
Shores
,
V.
Bigman
,
G. R.
Bennett
,
B. W.
Atherton
,
M.
Savage
,
W. A.
Stygar
,
G. T.
Leifeste
, and
J. L.
Porter
, “
Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid al tubes driven by the 20-ma, 100-ns Z facility
,”
Phys. Rev. Lett.
105
,
185001
(
2010
).
3.
D. B.
Sinars
,
S. A.
Slutz
,
M. C.
Herrmann
,
R. D.
McBride
,
M. E.
Cuneo
,
C. A.
Jennings
,
J. P.
Chittenden
,
A. L.
Velikovich
,
K. J.
Peterson
,
R. A.
Vesey
,
C.
Nakhleh
,
E. M.
Waisman
,
B. E.
Blue
,
K.
Killebrew
,
D.
Schroen
,
K.
Tomlinson
,
A. D.
Edens
,
M. R.
Lopez
,
I. C.
Smith
,
J.
Shores
,
V.
Bigman
,
G. R.
Bennett
,
B. W.
Atherton
,
M.
Savage
,
W. A.
Stygar
,
G. T.
Leifeste
, and
J. L.
Porter
, “
Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners
,”
Phys. Plasmas
18
,
056301
(
2011
).
4.
R. D.
McBride
,
S. A.
Slutz
,
C. A.
Jennings
,
D. B.
Sinars
,
M. E.
Cuneo
,
M. C.
Herrmann
,
R. W.
Lemke
,
M. R.
Martin
,
R. A.
Vesey
,
K. J.
Peterson
,
A. B.
Sefkow
,
C.
Nakhleh
,
B. E.
Blue
,
K.
Killebrew
,
D.
Schroen
,
T. J.
Rogers
,
A.
Laspe
,
M. R.
Lopez
,
I. C.
Smith
,
B. W.
Atherton
,
M.
Savage
,
W. A.
Stygar
, and
J. L.
Porter
, “
Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator
,”
Phys. Rev. Lett.
109
,
135004
(
2012
).
5.
T. J.
Awe
,
R. D.
McBride
,
C. A.
Jennings
,
D. C.
Lamppa
,
M. R.
Martin
,
D. C.
Rovang
,
S. A.
Slutz
,
M. E.
Cuneo
,
A. C.
Owen
,
D. B.
Sinars
,
K.
Tomlinson
,
M. R.
Gomez
,
S. B.
Hansen
,
M. C.
Herrmann
,
J. L.
McKenney
,
C.
Nakhleh
,
G. K.
Robertson
,
G. A.
Rochau
,
M. E.
Savage
,
D. G.
Schroen
, and
W. A.
Stygar
, “
Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field
,”
Phys. Rev. Lett.
111
,
235005
(
2013
).
6.
T. J.
Awe
,
C. A.
Jennings
,
R. D.
McBride
,
M. E.
Cuneo
,
D. C.
Lamppa
,
M. R.
Martin
,
D. C.
Rovang
,
D. B.
Sinars
,
S. A.
Slutz
,
A. C.
Owen
,
K.
Tomlinson
,
M. R.
Gomez
,
S. B.
Hansen
,
M. C.
Herrmann
,
M. C.
Jones
,
J. L.
McKenney
,
G. K.
Robertson
,
G. A.
Rochau
,
M. E.
Savage
,
D. G.
Schroen
, and
W. A.
Stygar
, “
Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field
,”
Phys. Plasmas
21
,
056303
(
2014
).
7.
M. R.
Gomez
,
S. A.
Slutz
,
A. B.
Sefkow
,
D. B.
Sinars
,
K. D.
Hahn
,
S. B.
Hansen
,
E. C.
Harding
,
P. F.
Knapp
,
P. F.
Schmit
,
C. A.
Jennings
,
T. J.
Awe
,
M.
Geissel
,
D. C.
Rovang
,
G. A.
Chandler
,
G. W.
Cooper
,
M. E.
Cuneo
,
A. J.
Harvey-Thompson
,
M. C.
Herrmann
,
M. H.
Hess
,
O.
Johns
,
D. C.
Lamppa
,
M. R.
Martin
,
R. D.
McBride
,
K. J.
Peterson
,
J. L.
Porter
,
G. K.
Robertson
,
G. A.
Rochau
,
C. L.
Ruiz
,
M. E.
Savage
,
I. C.
Smith
,
W. A.
Stygar
, and
R. A.
Vesey
, “
Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion
,”
Phys. Rev. Lett.
113
,
155003
(
2014
).
8.
R.
Reinovsky
,
W.
Anderson
,
W.
Atchison
,
C.
Ekdahl
,
R.
Faehl
,
I.
Lindemuth
,
D.
Morgan
,
M.
Murillo
,
J.
Stokes
, and
J.
Shlachter
, “
Instability growth in magnetically imploded high-conductivity cylindrical liners with material strength
,”
IEEE Trans. Plasma Sci.
30
,
1764
1776
(
2002
).
9.
M. K.
Matzen
,
M. A.
Sweeney
,
R. G.
Adams
,
J. R.
Asay
,
J. E.
Bailey
,
G. R.
Bennett
,
D. E.
Bliss
,
D. D.
Bloomquist
,
T. A.
Brunner
,
R. B.
Campbell
,
G. A.
Chandler
,
C. A.
Coverdale
,
M. E.
Cuneo
,
J.-P.
Davis
,
C.
Deeney
,
M. P.
Desjarlais
,
G. L.
Donovan
,
C. J.
Garasi
,
T. A.
Haill
,
C. A.
Hall
,
D. L.
Hanson
,
M. J.
Hurst
,
B.
Jones
,
M. D.
Knudson
,
R. J.
Leeper
,
R. W.
Lemke
,
M. G.
Mazarakis
,
D. H.
McDaniel
,
T. A.
Mehlhorn
,
T. J.
Nash
,
C. L.
Olson
,
J. L.
Porter
,
P. K.
Rambo
,
S. E.
Rosenthal
,
G. A.
Rochau
,
L. E.
Ruggles
,
C. L.
Ruiz
,
T. W. L.
Sanford
,
J. F.
Seamen
,
D. B.
Sinars
,
S. A.
Slutz
,
I. C.
Smith
,
K. W.
Struve
,
W. A.
Stygar
,
R. A.
Vesey
,
E. A.
Weinbrecht
,
D. F.
Wenger
, and
E. P.
Yu
, “
Pulsed-power-driven high energy density physics and inertial confinement fusion research
,”
Phys. Plasmas
12
,
055503
(
2005
).
10.
R. W.
Lemke
,
M. D.
Knudson
,
D. E.
Bliss
,
K.
Cochrane
,
J.-P.
Davis
,
A. A.
Giunta
,
H. C.
Harjes
, and
S. A.
Slutz
, “
Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments
,”
J. Appl. Phys.
98
,
073530
(
2005
).
11.
M. R.
Martin
,
R. W.
Lemke
,
R. D.
McBride
,
J. P.
Davis
,
D. H.
Dolan
,
M. D.
Knudson
,
K. R.
Cochrane
,
D. B.
Sinars
,
I. C.
Smith
,
M.
Savage
,
W. A.
Stygar
,
K.
Killebrew
,
D. G.
Flicker
, and
M. C.
Herrmann
, “
Solid liner implosions on Z for producing multi-megabar, shockless compressions
,”
Phys. Plasmas
19
,
056310
(
2012
).
12.
D. D.
Ryutov
,
M. S.
Derzon
, and
M. K.
Matzen
, “
The physics of fast Z pinches
,”
Rev. Mod. Phys.
72
,
167
223
(
2000
).
13.
M. G.
Haines
, “
A review of the dense z-pinch
,”
Plasma Phys. Controlled Fusion
53
,
093001
(
2011
).
14.
D.
Yager-Elorriaga
,
M.
Gomez
,
D.
Ruiz
,
S.
Slutz
,
A.
Harvey-Thompson
,
C.
Jennings
,
P.
Knapp
,
P.
Schmit
,
M.
Weis
,
T.
Awe
,
G.
Chandler
,
M.
Mangan
,
C.
Myers
,
J.
Fein
,
B.
Galloway
,
M.
Geissel
,
M.
Glinsky
,
S.
Hansen
,
E.
Harding
,
D.
Lamppa
,
W.
Lewis
,
P.
Rambo
,
G.
Robertson
,
M.
Savage
,
G.
Shipley
,
I.
Smith
,
J.
Schwarz
,
D.
Ampleford
,
K.
Beckwith
,
K.
Peterson
,
J.
Porter
,
G.
Rochau
, and
D.
Sinars
, “
An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories
,”
Nucl. Fusion
62
,
042015
(
2022
).
15.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720–722
,
1
136
(
2017
).
16.
Y.
Zhou
, “
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723–725
,
1
160
(
2017
).
17.
Y.
Zhou
,
T. T.
Clark
,
D. S.
Clark
,
S. G.
Glendinning
,
M. A.
Skinner
,
C. M.
Huntington
,
O. A.
Hurricane
,
A. M.
Dimits
, and
B. A.
Remington
, “
Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
,”
Phys. Plasmas
26
,
080901
(
2019
).
18.
Y.
Zhou
,
R. J.
Williams
,
P.
Ramaprabhu
,
M.
Groom
,
B.
Thornber
,
A.
Hillier
,
W.
Mostert
,
B.
Rollin
,
S.
Balachandar
,
P. D.
Powell
,
A.
Mahalov
, and
N.
Attal
, “
Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales
,”
Physica D
423
,
132838
(
2021
).
19.
G.
Terrones
, “
Fastest growing linear Rayleigh–Taylor modes at solid-fluid and solid-solid interfaces
,”
Phys. Rev. E
71
,
036306
(
2005
).
20.
A. R.
Piriz
,
J. J. L.
Cela
,
O. D.
Cortázar
,
N. A.
Tahir
, and
D. H. H.
Hoffmann
, “
Rayleigh–Taylor instability in elastic solids
,”
Phys. Rev. E
72
,
056313
(
2005
).
21.
A. R.
Piriz
,
J. J.
López Cela
, and
N. A.
Tahir
, “
Linear analysis of incompressible Rayleigh–Taylor instability in solids
,”
Phys. Rev. E
80
,
046305
(
2009
).
22.
H.-S.
Park
,
K. T.
Lorenz
,
R. M.
Cavallo
,
S. M.
Pollaine
,
S. T.
Prisbrey
,
R. E.
Rudd
,
R. C.
Becker
,
J. V.
Bernier
, and
B. A.
Remington
, “
Viscous Rayleigh–Taylor instability experiments at high pressure and strain rate
,”
Phys. Rev. Lett.
104
,
135504
(
2010
).
23.
H.-S.
Park
,
B. A.
Remington
,
R. C.
Becker
,
J. V.
Bernier
,
R. M.
Cavallo
,
K. T.
Lorenz
,
S. M.
Pollaine
,
S. T.
Prisbrey
,
R. E.
Rudd
, and
N. R.
Barton
, “
Strong stabilization of the Rayleigh–Taylor instability by material strength at megabar pressures
,”
Phys. Plasmas
17
,
056314
(
2010
).
24.
B. A.
Remington
,
H.-S.
Park
,
D. T.
Casey
,
R. M.
Cavallo
,
D. S.
Clark
,
C. M.
Huntington
,
C. C.
Kuranz
,
A. R.
Miles
,
S. R.
Nagel
,
K. S.
Raman
, and
V. A.
Smalyuk
, “
Rayleigh–Taylor instabilities in high-energy density settings on the national ignition facility
,”
Proc. Nat. Acad. Sci. U.S.A.
116
,
18233
18238
(
2019
).
25.
A.
Krygier
,
P. D.
Powell
,
J. M.
McNaney
,
C. M.
Huntington
,
S. T.
Prisbrey
,
B. A.
Remington
,
R. E.
Rudd
,
D. C.
Swift
,
C. E.
Wehrenberg
,
A.
Arsenlis
,
H.-S.
Park
,
P.
Graham
,
E.
Gumbrell
,
M. P.
Hill
,
A. J.
Comley
, and
S. D.
Rothman
, “
Extreme hardening of Pb at high pressure and strain rate
,”
Phys. Rev. Lett.
123
,
205701
(
2019
).
26.
Y. B.
Sun
and
A. R.
Piriz
, “
Magneto-Rayleigh–Taylor instability in solid media
,”
Phys. Plasmas
21
,
072708
(
2014
).
27.
M. R.
Weis
,
P.
Zhang
,
Y. Y.
Lau
,
P. F.
Schmit
,
K. J.
Peterson
,
M.
Hess
, and
R. M.
Gilgenbach
, “
Coupling of sausage, kink, and magneto-Rayleigh–Taylor instabilities in a cylindrical liner
,”
Phys. Plasmas
22
,
032706
(
2015
).
28.
Y. B.
Sun
,
R. H.
Zeng
, and
J. J.
Tao
, “
Effects of viscosity and elasticity on Rayleigh–Taylor instability in a cylindrical geometry
,”
Phys. Plasmas
28
,
062701
(
2021
).
29.
J. N.
Gou
,
R. H.
Zeng
,
C.
Wang
, and
Y. B.
Sun
, “
Analytical model for viscous and elastic Rayleigh–Taylor instabilities in convergent geometries at static interfaces
,”
AIP Adv.
12
,
075217
(
2022
).
30.
A. R.
Piriz
,
S. A.
Piriz
, and
N. A.
Tahir
, “
Elastic-plastic Rayleigh–Taylor instability at a cylindrical interface
,”
Phys. Rev. E
104
,
035102
(
2021
).
31.
A. R.
Piriz
,
S. A.
Piriz
, and
N. A.
Tahir
, “
Cylindrical convergence effects on the Rayleigh–Taylor instability in elastic and viscous media
,”
Phys. Rev. E
106
,
015109
(
2022
).
32.
K. S.
Thorne
and
R. D.
Blindfold
,
Modern Classical Physics
(
Princeton University Press
,
2017
).
33.
D. A.
Yager-Elorriaga
,
Y. Y.
Lau
,
P.
Zhang
,
P. C.
Campbell
,
A. M.
Steiner
,
N. M.
Jordan
,
R. D.
McBride
, and
R. M.
Gilgenbach
, “
Evolution of sausage and helical modes in magnetized thin-foil cylindrical liners driven by a z-pinch
,”
Phys. Plasmas
25
,
056307
(
2018
).
34.
G.
Terrones
and
M. D.
Carrara
, “
Rayleigh–Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface
,”
Phys. Fluids
27
,
054105
(
2015
).
35.
G.
Terrones
and
T.
Heberling
, “
Rayleigh–Taylor instability at spherical interfaces between viscous fluids: The fluid/fluid interface
,”
Phys. Fluids
32
,
094105
(
2020
).
36.
Y. Y.
Lau
,
J. C.
Zier
,
I. M.
Rittersdorf
,
M. R.
Weis
, and
R. M.
Gilgenbach
, “
Anisotropy and feedthrough in magneto-Rayleigh–Taylor instability
,”
Phys. Rev. E
83
,
066405
(
2011
).
37.
P.
Zhang
,
Y. Y.
Lau
,
I. M.
Rittersdorf
,
M. R.
Weis
,
R. M.
Gilgenbach
,
D.
Chalenski
, and
S. A.
Slutz
, “
Effects of magnetic shear on magneto-Rayleigh–Taylor instability
,”
Phys. Plasmas
19
,
022703
(
2012
).
38.
L. F.
Wang
,
W. H.
Ye
,
X. T.
He
,
J. F.
Wu
,
Z. F.
Fan
,
C.
Xue
,
H. Y.
Guo
,
W. Y.
Miao
,
Y. T.
Yuan
,
J. Q.
Dong
,
G.
Jia
,
J.
Zhang
,
Y. J.
Li
,
J.
Liu
,
M.
Wang
,
Y. K.
Ding
, and
W. Y.
Zhang
, “
Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions
,”
Sci. China Phys. Mech. Astron.
60
,
055201
(
2017
).
39.
Y. B.
Sun
,
J. J.
Tao
, and
X. T.
He
, “
Unified decomposition method to study Rayleigh–Taylor instability in liquids and solids
,”
Phys. Rev. E
97
,
063109
(
2018
).
40.
R. P.
Drake
,
High-Energy-Density-Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics
(
Springer
,
2006
).
You do not currently have access to this content.