The basic interest of studying the ion flow dynamics in a disk-shaped inertial electrostatic confinement fusion (IECF) device is to achieve an explicit condition where large fusion products are possible from such a portable device, and then, it can be used for a wide range of applications. We modified the existing IECF device by introducing two external grids along with the central grid and investigated the plasma properties using the Langmuir probe technique at different operating voltages in this new configuration of the device. By taking measurements of the plasma properties throughout the chamber, the device is optimized for better ion confinement and ion flow behavior. A well-established comparison of plasma properties, such as ion density and potential in this new arrangement, has been carried out with the single-gridded IECF system. The triple grid arrangement switches to a lower working pressure region, and hence high energetic ion beams are procured. Because of the different discharge mechanisms, variations in plasma potential profile and ion confinement processes are observed when compared to the single-gridded IECF device.

1.
W. C.
Elmore
,
J. L.
Tuck
, and
K. M.
Watson
,
Phys. Fluids
2
,
239
(
1959
).
2.
P. T.
Farnsworth
, U.S. patent 3,258,402 (June
1996
).
3.
G. H.
Miley
and
S. K.
Murali
,
Inertial Electrostatic Confinement (IEC) Fusion
(
Springer
,
2014
).
4.
T. J.
Dolan
,
Plasma Phys. Controlled Fusion
36
,
1539
(
1994
).
5.
M.
Bakr
,
J. P.
Wulfkuhler
,
K.
Mukai
,
K.
Masuda
,
M.
Tajmar
, and
S.
Konishi
,
Phys. Plasmas
28
,
012706
(
2021
).
6.
D.
Tiedemann
,
P.
Hofmann
,
J.
Emmerlich
,
Y. A.
Chan
,
S.
Ulrich
,
G.
Herdrich
, and
M.
Muller
,
Vacuum
193
,
110502
(
2021
).
7.
T. H.
Rider
,
Phys. Plasmas
2
,
1853
(
1995
).
8.
R. E.
Chrien
, in
Neutron Radiative Capture
, edited by
R. E.
Chrien
(
Pergamon
,
Oxford
,
1984
), Chap. 7.
9.
K.
Yoshikawa
,
K.
Masuda
,
T.
Takamatsu
,
S.
Shiroya
,
T.
Misawa
,
E.
Hotta
,
M.
Ohnishi
,
K.
Yamauchi
,
H.
Osawa
, and
Y.
Takahashi
,
Nucl. Instrum. Methods Phys. Res., Sect. B
261
,
299
(
2007
).
10.
S. K.
Murali
,
G. A.
Emmert
,
J. F.
Santarius
, and
G. L.
Kulcinski
,
Phys. Plasmas
17
,
102701
(
2010
).
11.
W. M.
Stacey
,
J. A.
Favorite
,
M. J.
Belanger
,
R. D.
Granberg
,
S. L.
Grimm
,
F. A.
Kelly
,
S.
Klima
,
J. S.
Lahr
,
E. D.
Mckamey
,
M. S.
Mckinley
,
G. M.
Nicholson
,
D. C.
Norris
,
R.
Rubilar
,
Z. L.
Sasnett
,
G. J.
Shott
,
M. J.
Stinson
,
M. R.
Sutton
,
A. H.
Thatcher
,
R. J.
Turmel
, and
K. G.
Veinot
,
Fusion Technol.
32
,
563
(
1997
).
12.
D.
Bhattacharjee
,
N.
Buzarbaruah
, and
S. R.
Mohanty
,
J. Appl. Phys.
130
,
053302
(
2021
).
13.
B. B.
Cipiti
and
G. L.
Kulcinski
,
Fusion Sci. Technol.
47
,
1245
(
2005
).
14.
B. B.
Cipiti
and
G. L.
Kulcinski
,
J. Nucl. Mater.
347
,
298
(
2005
).
15.
M.
Bakr
,
K.
Mukai
,
K.
Masuda
,
Y.
Yagi
, and
S.
Konishi
,
Fusion Eng. Des.
167
,
112346
(
2021
).
16.
K.
Noborio
,
Y.
Yamamoto
,
Y.
Ueno
, and
S.
Konishi
,
Fusion Eng. Des.
81
,
1701
(
2006
).
17.
R.
Bowden-Reid
and
J.
Khachan
,
Phys. Plasmas
28
,
042703
(
2021
).
18.
K.
Masuda
,
K.
Taruya
,
T.
Koyama
,
H.
Hashimoto
,
K.
Yoshikawa
,
H.
Toku
,
Y.
Yamamoto
,
M.
Ohnishi
,
H.
Horiike
, and
N.
Inoue
,
Fusion Sci. Technol.
39
,
1202
(
2001
).
19.
R.
Radel
and
G.
Kulcinski
,
Fusion Sci. Technol.
52
,
544
(
2007
).
20.
T. J.
McGuire
, “
Improved lifetimes and synchronization behavior in multi-grid inertial electrostatic confinement fusion devices
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2007
).
21.
T. A.
Thorson
,
R. D.
Durst
,
R. J.
Fonck
, and
L. P.
Wainwright
,
Phys. Plasmas
4
,
4
15
(
1997
).
22.
C. C.
Dietrich
,
L. J.
Eurice
, and
R. J.
Sedwick
, in
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
(
American Institute of Aeronautics and Astronautics
,
Hartford, CT
,
2008
).
23.
C. C.
Dietrich
, “
Improving particle confinement in inertial electrostatic fusion for spacecraft power and propulsion
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2007
).
24.
N.
Buzarbaruah
,
N.
Dutta
,
D.
Borgohain
,
S. R.
Mohanty
, and
H.
Bailung
,
Phys. Lett. A
381
,
2391
(
2017
).
25.
D.
Bhattacharjee
,
N.
Buzarbaruah
,
S. R.
Mohanty
, and
S.
Adhikari
,
Phys. Rev. E
102
,
063205
(
2020
).
26.
N.
Buzarbaruah
,
N. J.
Dutta
,
J. K.
Bhardwaz
, and
S. R.
Mohanty
,
Fusion Eng. Des.
90
,
97
(
2015
).
27.
N.
Buzarbaruah
,
S. R.
Mohanty
, and
E.
Hotta
,
Nucl. Instrum. Methods Phys. Res., Sect. A
911
,
66
(
2018
).
28.
V. A.
Godyak
and
B. M.
Alexandrovich
,
J. Appl. Phys.
118
,
233302
(
2015
).
29.
R. L.
Merlino
,
Am. J. Phys.
75
,
1078
(
2007
).
30.
R.
Hirsch
,
J. Appl. Phys.
38
,
4522
(
1967
).
31.
D.
Bhattacharjee
,
D.
Jigdung
,
N.
Buzarbaruah
,
S. R.
Mohanty
, and
H.
Bailung
,
Phys. Plasmas
26
,
073514
(
2019
).
32.
D. A.
Swanson
,
B. E.
Cherrington
, and
J. T.
Verdeyen
,
Phys. Fluids
16
,
1939
(
1973
).
33.
M.
Ohnishi
,
K. H.
Sato
,
Y.
Yamamoto
, and
K.
Yoshikawa
,
Nucl. Fusion
37
,
611
(
1997
).
You do not currently have access to this content.