Plasma waves with helical wavefront are studied theoretically from the quantum mechanical viewpoint and are shown to produce a spinning motion of a charged macroparticle in a complex plasma. The electrostatic helical perturbations are described by the wave function for a Laguerre–Gaussian beam mode with the radial/angular mode numbers n/ l. The interaction and the transfer of angular momentum from the wave to a particle are analyzed by the method of second quantization with the help of the Feynman diagram. Laguerre function, instead of the Born approximation, is introduced to describe plasma waves with helical wavefront. A pair of dust particles in a complex plasma exchange a quasiparticle (virtual plasmon) resulting in the acquisition of angular momentum, which makes a dust particle spin in motion with rotational frequency Ω ϕ. The resonance condition ω k v z l Ω ϕ = 0 and the conservation of angular momentum I d Ω ϕ = l determine the rotational frequency, where ω and k are frequency and axial wave number of the helical wave, and v z and I d are axial velocity and the moment of inertia of a dust particle.

1.
J. H.
Poynting
, “
The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light
,”
Proc. R. Soc. London A
82
,
560
(
1909
).
2.
R. A.
Beth
, “
Mechanical detection and measurement of the angular momentum of light
,”
Phys. Rev.
50
,
115
(
1936
).
3.
L.
Allen
,
M. W.
Beijersbergen
,
R. J. C.
Spreeuw
, and
J. P.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
,”
Phys. Rev. A
45
,
8185
(
1992
).
4.
M.
Padgett
,
J.
Courtial
, and
L.
Allen
, “
Light's orbital angular momentum
,”
Phys. Today
57
(
5
),
35
(
2004
).
5.
S. M.
Lloyd
,
M.
Babiker
,
G.
Thirunavukkarasu
, and
J.
Yuan
, “
Electron vortices: Beams with orbital angular momentum
,”
Rev. Mod. Phys.
89
,
035004
(
2017
).
6.
H.
He
,
M. E. J.
Friese
,
N. R.
Heckenberg
, and
H.
Rubinsztein-Dunlop
, “
Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity
,”
Phys. Rev. Lett.
75
,
826
(
1995
).
7.
D.
Nobahar
,
S.
Khorram
, and
J. D.
Rodrigues
, “
Vortex beam manipulation through a tunable plasma-ferrite metamaterial
,”
Sci. Rep.
11
,
16048
(
2021
).
8.
J. T.
Mendonça
,
S.
Ali
, and
B.
Thide
, “
Plasmons with orbital angular momentum
,”
Phys. Plasmas
16
,
112103
(
2009
).
9.
J. T.
Mendonça
, “
Kinetic description of electron plasma waves with orbital angular momentum
,”
Phys. Plasmas
19
,
112113
(
2012
).
10.
D. R.
Blackman
,
R.
Nuter
,
P.
Korneev
, and
V. T.
Tikhonchuk
, “
Kinetic plasma waves carrying orbital angular momentum
,”
Phys. Rev. E
100
,
013204
(
2019
).
11.
D. R.
Blackman
,
R.
Nuter
,
P.
Korneev
,
A.
Arefiev
, and
V. T.
Tikhonchuk
, “
Kinetic phenomena of helical plasma waves with orbital angular momentum
,”
Phys. Plasmas
29
,
072105
(
2022
).
12.
S. A.
Khan
, “
Vortex type oscillations in a multi-component plasma
,”
Results Phys.
7
,
4065
(
2017
).
13.
S. A.
Khan
,
S.
Ali
, and
J. T.
Mendonça
, “
Plasmons carrying orbital angular momentum in quantum plasmas
,”
J. Plasma Phys.
79
,
973
(
2013
).
14.
J. T.
Mendonça
,
A.
Serbeto
, and
J.
Vieira
, “
Plasmons excitations with a semi-integerangular momentum
,”
Sci. Rep.
8
,
7817
(
2018
).
15.
D.
Pines
and
J. R.
Schrieffer
, “
Approach to equilibrium of electrons, plasmons, and phonons in quantum and classical plasmas
,”
Phys. Rev.
125
,
804
(
1962
).
16.
D.
Pines
and
P.
Nozières
,
The Theory of Quantum Liquids
(
W. A. Benjamin, Inc
.,
New York
,
1966
), Appendix second quantization.
17.
E. G.
Harris
, “
Classical plasma phenomena from a quantum mechanical viewpoint
,” in
Advances in Plasma Physics
, edited by
A.
Simon
and
W. B.
Thompson
(
Wiley
,
New York
,
1969
), Vol.
3
, p.
157
.
18.
L.
Gomberoff
, “
A quantum field theoretical approach to plasmas
,”
J. Plasma Phys.
18
,
145
(
1977
).
19.
O.
Ishihara
, “
Nonresonant wave-particle interaction in a semiclassical quasilinear theory
,”
Phys. Rev. A
35
,
1219
(
1987
).
20.
V. N.
Tsytovich
,
G. E.
Morfill
, and
H.
Thomas
, “
Complex plasma as unusual state of matter
,”
Plasma Phys. Rep.
28
,
623
(
2002
).
21.
R.
Merlino
and
J. A.
Goree
, “
Dusty plasmas in the laboratory, industry, and space
,”
Phys. Today
57
(
7
),
32
(
2004
).
22.
V. E.
Fortov
,
A. V.
Ivlev
,
S. A.
Khrapak
,
A. G.
Khrapak
, and
G. E.
Morfill
, “
Complex (dusty) plasmas: Current status, open issues, perspectives
,”
Phys. Rep.
421
,
1
(
2005
).
23.
S. V.
Vladimirov
,
K.
Ostrikov
, and
A. A.
Samarian
,
Physics and Applications of Complex Plasmas
(
Imperial College Press
,
London
,
2005
).
24.
O.
Ishihara
, “
Complex plasma: Dusts in plasma
,”
J. Phys. D: Appl. Phys.
40
,
R121
(
2007
).
25.
G. E.
Morfill
and
A. V.
Ivlev
, “
Complex plasmas: An interdisciplinary research field
,”
Rev. Mod. Phys.
81
,
1353
(
2009
).
26.
M. H.
Thoma
,
H. M.
Thomas
,
C. A.
Knapek
,
A.
Melzer
, and
U.
Konopka
, “
Complex plasma research under microgravity conditions
,”
npj Microgravity
9
,
13
(
2023
).
27.
R. J.
Trumpler
, “
Preliminary results on the distances, dimensions and space distribution of open star clusters
,”
Lick Obs. Bull.
14
,
154
(
1930
).
28.
J.
Stebbins
,
C. M.
Huffer
, and
A. E.
Whitford
, “
Space reddening in the galaxy
,”
Astrophys. J.
90
,
209
(
1939
).
29.
W. A.
Hiltner
, “
Polarization of light from distant stars by interstellar medium
,”
Astrophys. J.
109
,
165
(
1949
).
30.
J. S.
Hall
, “
Observations of the polarized light from stars
,”
Science
109
,
166
(
1949
).
31.
D. A.
Mendis
and
M.
Rosenberg
, “
Cosmic dusty plasma
,”
Annu. Rev. Astron. Astrophys.
32
,
419
(
1994
).
32.
Planck Collaboration
,
N.
Aghanim
,
Y.
Akrami1
,
M. I. R.
Alves
,
M.
Ashdown
,
J.
Aumont
,
C.
Baccigalupi
,
M.
Ballardini
,
A. J.
Banday
,
R. B.
Barreiro
,
N.
Bartolo
et al, “
Planck 2018 results XII. Galactic astrophysics using polarized dust emission
,”
Astron. Astrophys.
641
,
A12
(
2020
).
33.
I.
Adamovich
,
S.
Agarwal
,
E.
Ahedo
,
L. L.
Alves
,
S.
Baalrud
,
N.
Babaeva
,
A.
Bogaerts
,
A.
Bourdon
,
P. J.
Bruggeman
,
C.
Canal
et al, “
The 2022 plasma roadmap: Low temperature plasma science and technology
,”
J. Phys. D: Appl. Phys.
55
,
373001
(
2022
).
34.
S. V.
Vladimirov
and
O.
Ishihara
, “
On plasma crystal formation
,”
Phys. Plasmas
3
,
444
(
1996
).
35.
O.
Ishihara
and
S. V.
Vladimirov
, “
Wake potential of a dust grain in a plasma with ion flow
,”
Phys. Plasmas
4
,
69
(
1997
).
36.
M.
Lampe
,
G.
Joyce
,
G.
Ganguli
, and
V.
Gavrishchaka
, “
Interactions between dust grains in a dusty plasma
,”
Phys. Plasmas
7
,
3851
(
2000
).
37.
O.
Ishihara
and
S. V.
Vladimirov
, “
Hamiltonian dynamics of dust-plasma interactions
,”
Phys. Rev. E
57
,
3392
(
1998
).
38.
O.
Ishihara
, “
Instability due to the dust-particulate-phonon interaction
,”
Phys. Rev. E
58
,
3733
(
1998
).
39.
T.
Kamimura
,
Y.
Suga
, and
O.
Ishihara
, “
Configurations of Coulomb clusters in plasma
,”
Phys. Plasmas
14
,
123706
(
2007
).
40.
T.
Kamimura
and
O.
Ishihara
, “
Coulomb double helical structure
,”
Phys. Rev. E
85
,
016406
(
2012
).
41.
T. W.
Hyde
,
J.
Kong
, and
L. S.
Matthews
, “
Helical structures in vertically aligned dust particle chains in a complex plasma
,”
Phys. Rev. E
87
,
053106
(
2013
).
42.
O. S.
Vaulina
,
I. I.
Lisina
, and
K. G.
Koss
, “
Formation of chain structures of cylindrical dust particles in a weakly ionized plasma
,”
J. Exp. Theor. Phys.
119
,
772
(
2014
).
43.
K.
Vermillion
, “
Modeling the influence of ion wakes on the self-organization of dust in a complex plasma
,” Ph.D. dissertation (
Baylor University
,
Texas
,
2022
).
44.
O.
Ishihara
and
N.
Sato
, “
On the rotation of a dust particulate in an ion flow in a magnetic field
,”
IEEE Trans. Plasma Sci.
29
,
179
(
2001
).
45.
O.
Ishihara
,
T.
Kamimura
,
K. I.
Hirose
, and
N.
Sato
, “
Rotation of a two-dimensional Coulomb cluster in a magnetic field
,”
Phys. Rev. E
66
,
046406
(
2002
).
46.
V. N.
Tsytovich
,
N.
Sato
, and
G. E.
Morfill
, “
Note on the charging and spinning of dust particles in complex plasmas in a strong magnetic field
,”
New J. Phys.
5
,
43
(
2003
).
47.
I. H.
Hutchinson
, “
Spin stability of asymmetrically charged plasma dust
,”
New J. Phys.
6
,
43
(
2004
).
48.
V. Y.
Karasev
,
E. S.
Dzlieva
,
A. I.
Eikhval'd
,
M. A.
Ermolenko
,
M. S.
Golubev
, and
A. Y.
Ivanov
, “
Single dust-particle rotation in a glow-discharge plasma
,”
Phys. Rev. E
79
,
026406
(
2009
).
49.
V. Y.
Karasev
,
M. A.
Ermolenko
,
E. S.
Dzlieva
,
S. I.
Pavlov
,
L. A.
Novikov
, and
I. C.
Mashek
, “
On the mechanism of own rotation of dust particles
,”
Tech. Phys.
61
,
618
(
2016
).
50.
V.
Nosenko
,
F.
Luoni
,
A.
Kaouk
,
M.
Rubin-Zuzic
, and
H.
Thomas
, “
Active Janus particles in a complex plasma
,”
Phys. Rev. Res.
2
,
033226
(
2020
).
51.
D.
Ticos
,
A.
Scurtu
,
J. D.
Williams
,
L.
Scott
,
E.
Thomas
, Jr.
,
D.
Sanford
, and
C. M.
Ticos
, “
Rotation of a strongly coupled dust cluster in a plasma by the torque of an electron beam
,”
Phys. Rev. E
103
,
023210
(
2021
).
52.
M.
Bonitz
,
Z. A.
Moldabekov
, and
T. S.
Ramazanov
, “
Quantum hydrodynamics for plasmas
,”
Phys. Plasmas
26
,
090601
(
2019
).
53.
A. E.
Siegman
,
Lasers
(
University Science Books
,
Mill Valley, CA
,
1986
), Chap. 16.
54.
G. B.
Arfken
,
H. J.
Weber
, and
F. E.
Harris
,
Mathematical Methods for Physicists
, 7th ed. (
Elsevier-Academic Press
,
Oxford
,
2013
), Chap. 18.
55.
R. E.
Peierls
,
Quantum Theory of Solids
(
Clarendon Press
,
Oxford
,
1955
).
56.
A. S.
Davydov
,
Quantum Mechanics
(
Pergamon Press
,
Oxford
,
1965
), Chap. XIV and XV.
57.
J. J.
Sakurai
,
Advanced Quantum Mechanics
(
Benjamin/Cummings Publishing Co., Inc
.,
1967
).
58.
R. W.
Hasse
, “
Semiclassical treatment of angular momentum
,”
J. Phys. Colloques
48
,
C2-305
(
1987
).
59.
L. D.
Landau
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Electrodynamics of Continuous Media
, 2nd ed. (
Pergamon Press
,
1984
).
60.
S. V.
Vladimirov
and
O.
Ishihara
, “
Buneman-type streaming instability in a plasma with dust particulates
,”
Phys. Scr.
60
,
370
(
1999
).
61.
P.
Lee
,
S.
Ong
, and
H. M.
Srivastava
, “
Some integrals of the products of Laguerre polynomials
,”
Int. J. Comput. Math.
78
,
303
(
2001
).
You do not currently have access to this content.