In this work, we present the first experimental observation of a triple point in a strongly coupled complex plasma medium. Initially, a 2D crystalline structure of the dust component consisting of monodisperse micrometer-sized particles is created. The evolution of this monolayer as a function of the discharge voltage is then investigated and, in the course of this evolution, the co-existence of three distinct phases of the system consisting of a liquid region and two crystalline regions with square and hexagonal lattice configurations is observed. Two different transition sequences are identified in the system, depending on the initial dust density of the monolayer. The particles in the fluid region have high kinetic energy. Before the emergence of a triple state, it is found that the particles in the different lattice geometries show different in-plane or out-of-plane oscillations. It is conjectured that a complex or mixed instability that originates in the system in a localized manner gives rise to the formation of the triple point in our experiments.

1.
E. C.
Whipple
, “
Potentials of surfaces in space
,”
Rep. Prog. Phys.
44
,
1197
(
1981
).
2.
T. G.
Northrop
, “
Dusty plasmas
,”
Phys. Scr.
45
,
475
(
1992
).
3.
P.
Robinson
and
P.
Coakley
, “
Spacecraft charging-progress in the study of dielectrics and plasmas
,”
IEEE Trans. Electr. Insul.
27
,
944
960
(
1992
).
4.
V. N.
Tsytovich
and
J.
Winter
, “
On the role of dust in fusion devices
,”
Phys.-Usp.
41
,
815
(
1998
).
5.
J.
Winter
and
G.
Gebauer
, “
Dust in magnetic confinement fusion devices and its impact on plasma operation
,”
J. Nucl. Mater.
266–269
,
228
233
(
1999
).
6.
H.
Ikezi
, “
Coulomb solid of small particles in plasmas
,”
Phys. Fluids
29
,
1764
1766
(
1986
).
7.
R. F.
Wuerker
,
H.
Shelton
, and
R. V.
Langmuir
, “
Electrodynamic containment of charged particles
,”
J. Appl. Phys.
30
,
342
349
(
2004
).
8.
G. S.
Selwyn
,
K. L.
Haller
, and
E. F.
Patterson
, “
Trapping and behavior of particulates in a radio frequency magnetron plasma etching tool
,”
J. Vac. Sci. Technol., A
11
,
1132
1135
(
1993
).
9.
H.
Kersten
,
H.
Deutsch
,
E.
Stoffels
,
W.
Stoffels
,
G.
Kroesen
, and
R.
Hippler
, “
Micro-disperse particles in plasmas: From disturbing side effects to new applications
,”
Contrib. Plasma Phys.
41
,
598
609
(
2001
).
10.
V. E.
Fortov
,
A. G.
Khrapak
,
S. A.
Khrapak
,
V. I.
Molotkov
, and
O. F.
Petrov
, “
Dusty plasmas
,”
Phys.-Usp.
47
,
447
(
2004
).
11.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
, “
Plasma crystal: Coulomb crystallization in a dusty plasma
,”
Phys. Rev. Lett.
73
,
652
655
(
1994
).
12.
J. H.
Chu
and
I.
Lin
, “
Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas
,”
Phys. Rev. Lett.
72
,
4009
4012
(
1994
).
13.
Y.
Hayashi
and
K.
Tachibana
, “
Observation of coulomb-crystal formation from carbon particles grown in a methane plasma
,”
Jpn. J. Appl. Phys., Part 2
33
,
L804
L806
(
1994
).
14.
V. A.
Schweigert
,
I. V.
Schweigert
,
A.
Melzer
,
A.
Homann
, and
A.
Piel
, “
Plasma crystal melting: A nonequilibrium phase transition
,”
Phys. Rev. Lett.
80
,
5345
5348
(
1998
).
15.
E. V.
Vasilieva
,
O. F.
Petrov
, and
M. M.
Vasiliev
, “
Laser-induced melting of two-dimensional dusty plasma system in rf discharge
,”
Sci. Rep.
11
,
523
(
2021
).
16.
L.
Couëdel
,
V.
Nosenko
,
A. V.
Ivlev
,
S. K.
Zhdanov
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Direct observation of mode-coupling instability in two-dimensional plasma crystals
,”
Phys. Rev. Lett.
104
,
195001
(
2010
).
17.
M. G.
Hariprasad
,
P.
Bandyopadhyay
,
G.
Arora
, and
A.
Sen
, “
Experimental observation of a first-order phase transition in a complex plasma monolayer crystal
,”
Phys. Rev. E
101
,
043209
(
2020
).
18.
A. V.
Zampetaki
,
H.
Huang
,
C.-R.
Du
,
H.
Löwen
, and
A. V.
Ivlev
, “
Buckling of two-dimensional plasma crystals with nonreciprocal interactions
,”
Phys. Rev. E
102
,
043204
(
2020
).
19.
S.
Singh
,
P.
Bandyopadhyay
,
K.
Kumar
, and
A.
Sen
, “
Square lattice formation in a monodisperse complex plasma
,”
Phys. Rev. Lett.
129
,
115003
(
2022
).
20.
M. G.
Hariprasad
,
P.
Bandyopadhyay
,
V. S.
Nikolaev
,
D. A.
Kolotinskii
,
S.
Arumugam
,
G.
Arora
,
S.
Singh
,
A.
Sen
, and
A. V.
Timofeev
, “
Self-sustained non-equilibrium co-existence of fluid and solid states in a strongly coupled complex plasma system
,”
Sci. Rep.
12
,
13882
(
2022
).
21.
V. S.
Nikolaev
and
A. V.
Timofeev
, “
Nonhomogeneity of phase state in a dusty plasma monolayer with nonreciprocal particle interactions
,”
Phys. Plasmas
28
,
033704
(
2021
).
22.
S.
Singh
,
P.
Bandyopadhyay
,
K.
Kumar
,
M. G.
Hariprasad
,
S.
Arumugam
, and
A.
Sen
, “
Transition of a 2D crystal to a non-equilibrium two-phase coexistence state
,”
Phys. Plasmas
30
,
043704
(
2023
).
23.
C.-R.
Du
,
V.
Nosenko
,
H. M.
Thomas
,
Y.-F.
Lin
,
G. E.
Morfill
, and
A. V.
Ivlev
, “
Slow dynamics in a quasi-two-dimensional binary complex plasma
,”
Phys. Rev. Lett.
123
,
185002
(
2019
).
24.
V.
Nosenko
,
S.
Zhdanov
,
A. V.
Ivlev
,
G.
Morfill
,
J.
Goree
, and
A.
Piel
, “
Heat transport in a two-dimensional complex (dusty) plasma at melting conditions
,”
Phys. Rev. Lett.
100
,
025003
(
2008
).
25.
Y.
Feng
,
J.
Goree
, and
B.
Liu
, “
Viscoelasticity of 2D liquids quantified in a dusty plasma experiment
,”
Phys. Rev. Lett.
105
,
025002
(
2010
).
26.
Y.
Feng
,
J.
Goree
,
B.
Liu
, and
E. G. D.
Cohen
, “
Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma
,”
Phys. Rev. E
84
,
046412
(
2011
).
27.
J.
Jolie
,
P.
Cejnar
,
R. F.
Casten
,
S.
Heinze
,
A.
Linnemann
, and
V.
Werner
, “
Triple point of nuclear deformations
,”
Phys. Rev. Lett.
89
,
182502
(
2002
).
28.
S. M.
Ilett
,
A.
Orrock
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
51
,
1344
1352
(
1995
).
29.
W. C. K.
Poon
,
F.
Renth
,
R. M. L.
Evans
,
D. J.
Fairhurst
,
M. E.
Cates
, and
P. N.
Pusey
, “
Colloid-polymer mixtures at triple coexistence: Kinetic maps from free-energy landscapes
,”
Phys. Rev. Lett.
83
,
1239
1242
(
1999
).
30.
M.
Chaudhuri
,
E.
Allahyarov
,
H.
Löwen
,
S. U.
Egelhaaf
, and
D. A.
Weitz
, “
Triple junction at the triple point resolved on the individual particle level
,”
Phys. Rev. Lett.
119
,
128001
(
2017
).
31.
S.
Hamaguchi
,
R. T.
Farouki
, and
D. H. E.
Dubin
, “
Triple point of Yukawa systems
,”
Phys. Rev. E
56
,
4671
4682
(
1997
).
32.
C. L.
Briant
and
J. J.
Burton
, “
Molecular dynamics study of the structure and thermodynamic properties of argon microclusters
,”
J. Chem. Phys.
63
,
2045
2058
(
1975
).
33.
G. S.
Redner
,
A.
Baskaran
, and
M. F.
Hagan
, “
Reentrant phase behavior in active colloids with attraction
,”
Phys. Rev. E
88
,
012305
(
2013
).
34.
M.
Losurdo
,
A.
Suvorova
,
S.
Rubanov
,
K.
Hingerl
, and
A. S.
Brown
, “
Thermally stable coexistence of liquid and solid phases in gallium nanoparticles
,”
Nat. Mater.
15
,
995
1002
(
2016
).
35.
J. T.
Siebert
,
J.
Letz
,
T.
Speck
, and
P.
Virnau
, “
Phase behavior of active Brownian disks, spheres, and dimers
,”
Soft Matter
13
,
1020
1026
(
2017
).
36.
A.
Prevost
,
P.
Melby
,
D. A.
Egolf
, and
J. S.
Urbach
, “
Nonequilibrium two-phase coexistence in a confined granular layer
,”
Phys. Rev. E
70
,
050301
(
2004
).
37.
F.
Peruani
,
J.
Starruß
,
V.
Jakovljevic
,
L.
Søgaard-Andersen
,
A.
Deutsch
, and
M.
Bär
, “
Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria
,”
Phys. Rev. Lett.
108
,
098102
(
2012
).
38.
S.
Mandal
,
B.
Liebchen
, and
H.
Löwen
, “
Motility-induced temperature difference in coexisting phases
,”
Phys. Rev. Lett.
123
,
228001
(
2019
).
39.
S.
Arumugam
,
P.
Bandyopadhyay
,
S.
Singh
,
M. G.
Hariprasad
,
D.
Rathod
,
G.
Arora
, and
A.
Sen
, “
DPEx-II: A new dusty plasma device capable of producing large sized DC coulomb crystals
,”
Plasma Sources Sci. Technol.
30
,
085003
(
2021
).
40.
L.
Couëdel
,
S. K.
Zhdanov
,
A. V.
Ivlev
,
V.
Nosenko
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view
,”
Phys. Plasmas
18
,
083707
(
2011
).
41.
L.
Couëdel
and
V.
Nosenko
, “
Stability of two-dimensional complex plasma monolayers in asymmetric capacitively coupled radio-frequency discharges
,”
Phys. Rev. E
105
,
015210
(
2022
).
42.
M.
Bonitz
,
J.
Lopez
,
K.
Becker
, and
H.
Thomsen
,
Complex Plasmas, Scientific Challenges and Technological Opportunities
, Springer Series on Atomic, Optical, and Plasma Physics (
Springer
,
2014
).
43.
S.
Nunomura
,
D.
Samsonov
,
S.
Zhdanov
, and
G.
Morfill
, “
Self-diffusion in a liquid complex plasma
,”
Phys. Rev. Lett.
96
,
015003
(
2006
).
44.
E.
Flenner
and
G.
Szamel
, “
Fundamental differences between glassy dynamics in two and three dimensions
,”
Nat. Commun.
6
,
7392
(
2015
).
45.
S.
Vivek
,
C. P.
Kelleher
,
P. M.
Chaikin
, and
E. R.
Weeks
, “
Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions
,”
Proc. Natl. Acad. Sci.
114
,
1850
1855
(
2017
).
46.
A.
Melzer
, “
Connecting the wakefield instabilities in dusty plasmas
,”
Phys. Rev. E
90
,
053103
(
2014
).
47.
V. A.
Schweigert
,
I. V.
Schweigert
,
A.
Melzer
,
A.
Homann
, and
A.
Piel
, “
Alignment and instability of dust crystals in plasmas
,”
Phys. Rev. E
54
,
4155
4166
(
1996
).
48.
R.
Ichiki
,
Y.
Ivanov
,
M.
Wolter
,
Y.
Kawai
, and
A.
Melzer
, “
Melting and heating of two-dimensional coulomb clusters in dusty plasmas
,”
Phys. Rev. E
70
,
066404
(
2004
).
49.
L.
Couëdel
,
S.
Zhdanov
,
V.
Nosenko
,
A. V.
Ivlev
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Synchronization of particle motion induced by mode coupling in a two-dimensional plasma crystal
,”
Phys. Rev. E
89
,
053108
(
2014
).
50.
R.
Banka
,
K.
Vermillion
,
L.
Matthews
,
T.
Hyde
, and
L.
Couëdel
, “
Dependence of ion wake characteristics on experimental conditions
,”
Plasma Phys. Controlled Fusion
65
,
044006
(
2023
).
You do not currently have access to this content.