The first indirect drive Inertial Confinement Fusion (ICF) experiments on the Laser Megajoule facility were carried out with approximately 150 kJ of laser energy distributed on 48 beams (12 quads) arranged in two cones. The target consisted of a gold vacuum rugby-shaped hohlraum and a plastic capsule located at its center, filled with deuterium gas fuel. The arrangement of the 12 quads is such that the laser irradiation on the wall generated a three-dimensional (3D) x-ray flux around the capsule creating 3D deformations on the imploding plastic shell. This constraint forced the design of a robust target (relatively thin ablator, around 40 μm) driven by a short laser pulse (3 ns) that delivered about 1011 neutrons. Full-integrated 3D radiation hydrodynamics simulations allowed both the target definition and the data interpretation (mainly radiation temperature, x-ray images, and neutron yield). 3D calculations and experiments compare well.

1.
J. D.
Lindl
,
P.
Amendt
,
R. L.
Berger
,
S. G.
Glendinning
,
S. H.
Glenzer
,
S. W.
Haan
,
R. L.
Kauffman
,
O. L.
Landen
, and
L. J.
Suter
, “
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
,”
Phys. Plasmas
11
,
339
(
2004
).
2.
C.
Cavailler
, “
Inertial fusion with the LMJ
,”
Plasma Phys. Controlled Fusion
47
,
B389
(
2005
).
3.
H.
Abu-Shawareb
et al, “
Lawson criterion for ignition exceeded in an inertial fusion experiment
,”
Phys. Rev. Lett.
129
,
075001
(
2022
).
4.
A. L.
Kritcher
,
A. B.
Zylstra
,
D. A.
Callahan
,
O. A.
Hurricane
,
C. R.
Weber
,
D. S.
Clark
,
C. V.
Young
,
J. E.
Ralph
,
D. T.
Casey
,
A.
Pak
et al, “
Design of an inertial fusion experiment exceeding the Lawson criterion for ignition
,”
Phys. Rev. E
106
,
025201
(
2022
).
5.
A. B.
Zylstra
,
A. L.
Kritcher
,
O. A.
Hurricane
,
D. A.
Callahan
,
J. E.
Ralph
,
D. T.
Casey
,
A.
Pak
,
O. L.
Landen
,
B.
Bachmann
,
K. L.
Baker
et al, “
Experimental achievement and signatures of ignition at the National Ignition Facility
,”
Phys. Rev. E
106
,
025202
(
2022
).
6.
G. H.
Miller
,
E. I.
Moses
, and
C. R.
Wuest
, “
The National Ignition Facility: Enabling fusion ignition for the 21st century
,”
Nucl. Fusion
44
,
S228
(
2004
).
7.
C. A.
Haynam
,
P. J.
Wegner
,
J. M.
Auerbach
,
M. W.
Bowers
,
S. N.
Dixit
,
G. V.
Erbert
,
G. M.
Heestand
,
M. A.
Henesian
,
M. R.
Hermann
,
K. S.
Jancaitis
et al, “
National ignition facility laser performance status
,”
Appl. Opt.
46
,
3276
(
2007
).
8.
E. I.
Moses
,
J.
Atherton
,
L.
Lagin
,
D.
Larson
,
C.
Keane
,
B.
MacGowan
,
R.
Patterson
,
M.
Spaeth
,
B.
Van Wonterghem
,
P.
Wegner
, and
R.
Kauffman
, “
The National Ignition Facility: Transition to a user facility
,”
J. Phys.
688
,
012073
(
2016
).
9.
C.
Lion
, “
The LMJ program: An overview
,”
J. Phys.
244
,
012003
(
2010
).
10.
A.
Casner
,
T.
Caillaud
,
S.
Darbon
,
A.
Duval
,
I.
Thfouin
,
J. P.
Jadaud
,
J. P.
LeBreton
,
C.
Reverdin
,
B.
Rosse
,
R.
Rosch
et al, “
LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics
,”
High Energy Density Phys.
17
,
2
(
2015
).
11.
J.-L.
Miquel
, “
LMJ & PETAL Status and first experiments
,”
J. Phys.
717
,
012084
(
2016
).
12.
J.-L.
Miquel
and
E.
Prene
, “
LMJ & PETAL status and program overview
,”
Nucl. Fusion
59
,
032005
(
2019
).
13.
CEA/DAM
, see https://www-lmj.cea.fr/LMJ-PETAL-User-Group.html for “
LMJ-PETAL User Guide
” (
2020
).
14.
B.
Ahlborn
,
M. H.
Key
, and
A. R.
Bell
, “
An analytic model for laser-driven ablative implosion of spherical shell targets
,”
Phys. Fluids
25
,
541
(
1982
).
15.
S.
Le Pape
,
L.
Divol
,
L.
Berzak Hopkins
,
A.
Mackinnon
,
N. B.
Meezan
,
D.
Casey
,
J.
Frenje
,
H.
Herrmann
,
J.
McNaney
,
T.
Ma
et al, “
Observation of a reflected shock in an indirectly driven spherical implosion at the National Ignition Facility
,”
Phys. Rev. Lett.
112
,
225002
(
2014
).
16.
E.
Lefebvre
,
S.
Bernard
,
C.
Esnault
,
P.
Gauthier
,
A.
Grisollet
,
P.
Hoch
,
L.
Jacquet
,
G.
Kluth
,
S.
Laffite
,
S.
Liberatore
et al, “
Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations
,”
Nucl. Fusion
59
,
032010
(
2019
).
17.
P.-E.
Masson-Laborde
,
S.
Laffite
,
C. K.
Li
,
S. C.
Wilks
,
R.
Riquier
,
R. D.
Petrasso
,
G.
Kluth
, and
V.
Tassin
, “
Interpretation of proton radiography experiments of hohlraums with three-dimensional simulations
,”
Phys. Rev. E
99
,
053207
(
2019
).
18.
M.
Primout
,
L.
Jacquet
,
L.
Lecherbourg
,
L.
Videau
,
P.-E.
Masson-Laborde
,
B.
Villette
,
G.
Legay
, and
L.
Le-Deroff
, “
First high radiant energy xenon-pipe-based x-ray source on LMJ
,”
Phys. Plasmas
29
,
073302
(
2022
).
19.
M. M.
Marinak
,
G. D.
Kerbel
,
N. A.
Gentile
,
O.
Jones
,
D.
Munro
,
S.
Pollaine
,
T. R.
Dittrich
, and
S. W.
Haan
, “
Three-dimensional HYDRA simulations of National Ignition Facility targets
,”
Phys. Plasmas
8
,
2275
(
2001
).
20.
J. L.
Milovich
,
E. L.
Dewald
,
A.
Pak
,
P.
Michel
,
R. P. J.
Town
,
D. K.
Bradlay
,
O.
Landen
, and
M. J.
Edwards
, “
Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility
,”
Phys. Plasmas
23
,
032701
(
2016
).
21.
D. S.
Clark
,
D. E.
Hinkel
,
D. C.
Eder
,
O. S.
Jones
,
S. W.
Haan
,
B. A.
Hammel
,
M. M.
Marinak
,
J. L.
Milovich
,
H. F.
Robey
,
L. J.
Suter
, and
R. P. J.
Town
, “
Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility
,”
Phys. Plasmas
20
,
056318
(
2013
).
22.
D. W.
Phillion
and
S. M.
Pollaine
, “
Dynamical compensation of irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral symmetry by laser beams
,”
Phys. Plasmas
1
,
2963
(
1994
).
23.
J. D.
Schnittman
and
R. S.
Craxton
, “
Indirect-drive radiation uniformity in tetrahedral hohlraums
,”
Phys. Plasmas
3
,
3786
(
1996
).
24.
J. D.
Schnittman
and
R. S.
Craxton
, “
Three-dimensional modeling of capsule implosions in OMEGA tetrahedral hohlraums
,”
Phys. Plasmas
7
,
2964
(
2000
).
25.
T. R.
Boehly
,
D. L.
Brown
,
R. S.
Craxton
,
R. L.
Keck
,
J. P.
Knauer
,
J. H.
Kelly
,
T. J.
Kessler
,
S. A.
Kumpan
,
S. J.
Loucks
,
S. A.
Letzring
et al, “
Initial performance results of the OMEGA laser system
,”
Opt. Commun.
133
,
495
(
1997
).
26.
K.
Lan
,
Y.
Dong
,
J.
Wu
,
Z.
Li
,
Y.
Chen
,
H.
Cao
,
L.
Hao
,
S.
Li
,
G.
Ren
,
W.
Jiang
et al, “
First inertial confinement fusion implosion experiment in octahedral spherical hohlraum
,”
Phys. Rev. Lett.
127
,
245001
(
2021
).
27.
X.
Li
,
Y.
Dong
,
D.
Kang
,
W.
Jiang
,
H.
Shen
,
L.
Kuang
,
H.
Zhang
,
J.
Yang
,
Q.
Wang
,
C.
Yin
et al, “
First indirect drive experiment using a six-cylinder-port hohlraum
,”
Phys. Rev. Lett.
128
,
195001
(
2022
).
28.
K.
Lan
,
J.
Liu
,
Z.
Li
,
X.
Xie
,
W.
Huo
,
Y.
Chen
,
G.
Ren
,
C.
Zheng
,
D.
Yang
,
S.
Li
et al, “
Progress in octahedral spherical hohlraum study
,”
Matter Radiat. Extremes
1
,
8
(
2016
).
29.
S.
Jiang
,
F.
Wang
,
Y.
Ding
,
S.
Liu
,
J.
Yang
,
S.
Li
,
T.
Huang
,
Z.
Cao
,
Z.
Yang
,
X.
Hu
et al, “
Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China
,”
Nucl. Fusion
59
,
032006
(
2019
).
30.
W. A.
Farmer
,
M.
Tabak
,
J. H.
Hammer
,
P. A.
Amendt
, and
D. E.
Hinkel
, “
High-temperature hohlraum designs with multiple laser-entrance holes
,”
Phys. Plasmas
26
,
032701
(
2019
).
31.
W. Y.
Wang
and
R. S.
Craxton
, “
Pentagonal prism spherical hohlraums for OMEGA
,”
Phys. Plasmas
28
,
062703
(
2021
).
32.
G.
Huser
,
C.
Courtois
, and
M. C.
Monteil
, “
Wall and laser spot motion in cylindrical hohlraums
,”
Phys. Plasmas
16
,
032703
(
2009
).
33.
A.
Casner
,
L.
Masse
,
S.
Liberatore
,
P.
Loiseau
,
P. E.
Masson-Laborde
,
L.
Jacquet
,
D.
Martinez
,
A. S.
Moore
,
R.
Seugling
,
S.
Felker
et al, “
Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility
,”
Phys. Plasmas
22
,
056302
(
2015
).
34.
M. B.
Schneider
,
S. A.
MacLaren
,
K.
Widmann
,
N. B.
Meezan
,
J. H.
Hammer
,
B. E.
Yoxall
,
P. M.
Bell
,
D. K.
Bradley
,
D. A.
Callahan
,
M. J.
Edwards
et al, “
Images of the gold bubble feature in NIF Gas-Filled ignition hohlraums
,”
J. Phys.
717
,
012049
(
2016
).
35.
M.
Caillaud
,
S.
Lemaire
,
S.
Ménard
,
P.
Rathouit
,
J. C.
Ribes
, and
D.
Riz
, “
DIANE multiparticle transport code
,” in
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo
,
2014
.
36.
D. J.
Strozzi
,
D. S.
Bailey
,
P.
Michel
,
L.
Divol
,
S. M.
Sepke
,
G. D.
Kerbel
,
C. A.
Thomas
,
J. E.
Ralph
,
J. D.
Moody
, and
M. B.
Schneider
, “
Interplay of laser-plasma interactions and inertial fusion hydrodynamics
,”
Phys. Rev. Lett.
118
,
025002
(
2017
).
37.
M.
Vandenboomgaerde
,
J.
Bastian
,
A.
Casner
,
D.
Galmiche
,
J. P.
Jadaud
,
S.
Laffite
,
S.
Liberatore
,
G.
Malinie
, and
F.
Philippe
, “
Prolate-spheroid (“rugby-shaped”) hohlraum for inertial confinement fusion
,”
Phys. Rev. Lett.
99
,
065004
(
2007
).
38.
P.
Amendt
,
C.
Cerjan
,
A.
Hamza
,
D. E.
Hinkel
,
J. L.
Milovich
, and
H. F.
Robey
, “
Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums
,”
Phys. Plasmas
14
,
056312
(
2007
).
39.
P.
Amendt
,
C.
Cerjan
,
D. E.
Hinkel
,
J. L.
Milovich
,
H. S.
Park
, and
H. F.
Robey
, “
Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement
,”
Phys. Plasmas
15
,
012702
(
2008
).
40.
A.
Casner
,
D.
Galmiche
,
G.
Huser
,
J. P.
Jadaud
,
S.
Liberatore
, and
M.
Vandenboomgaerde
, “
Indirect drive ablative Rayleigh–Taylor experiments with rugby hohlraums on OMEGA
,”
Phys. Plasmas
16
,
092701
(
2009
).
41.
F.
Philippe
,
A.
Casner
,
T.
Caillaud
,
O.
Landoas
,
M. C.
Monteil
,
S.
Liberatore
,
H. S.
Park
,
P.
Amendt
,
H.
Robey
,
C.
Sorce
et al, “
Experimental demonstration of x-ray drive enhancement with rugby-shaped hohlraums
,”
Phys. Rev. Lett.
104
,
035004
(
2010
).
42.
H. F.
Robey
,
P.
Amendt
,
H. S.
Park
,
R. P. J.
Town
,
J. L.
Milovich
,
T.
Döppner
,
D. E.
Hinkel
,
R.
Wallace
,
C.
Sorce
,
D. J.
Strozzi
et al, “
High performance capsule implosions on the OMEGA Laser facility with rugby hohlraums
,”
Phys. Plasmas
17
,
056313
(
2010
).
43.
F.
Philippe
,
V.
Tassin
,
S.
Depierreux
,
P.
Gauthier
,
P. E.
Masson-Laborde
,
M. C.
Monteil
,
P.
Seytor
,
B.
Villette
,
B.
Lasinski
,
H. S.
Park
et al, “
Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega
,”
Phys. Plasmas
21
,
074504
(
2014
).
44.
P. E.
Masson-Laborde
,
M. C.
Monteil
,
V.
Tassin
,
F.
Philippe
,
P.
Gauthier
,
A.
Casner
,
S.
Depierreux
,
C.
Neuville
,
B.
Villette
,
S.
Laffite
et al, “
Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums
,”
Phys. Plasmas
23
,
022703
(
2016
).
45.
P.
Amendt
,
D.
Ho
,
R.
Nora
,
Y.
Ping
, and
V.
Smalyuk
, “
High-volume and -adiabat capsule (“HVAC”) ignition: Lowered fuel compression requirements using advanced Hohlraums
,”
Phys. Plasmas
27
,
122708
(
2020
).
46.
P.
Hoch
, “
An arbitrary Lagrangian-Eulerian strategy to solve compressible fluid flows
,” preprint https://hal.science/hal-00366858 (
2009
).
47.
P.
Hoch
and
E.
Labourasse
, “
A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex hull preservation
,”
Int. J. Numer. Methods Fluids
76
,
1043
(
2014
).
48.
C.
Bowen
and
P.
Kaiser
, “
Dielectronic recombination in Au ionisation temperature calculations
,”
J. Quant. Spectrosc. Radiat. Transfer
81
,
85
(
2003
).
49.
C.
Bowen
,
F.
Wagon
,
D.
Galmiche
,
P.
Loiseau
,
E.
Dattolo
, and
D.
Babonneau
, “
Gold emissivities for hydrocode applications
,”
Phys. Plasmas
11
,
4641
(
2004
).
50.
O.
Poujade
,
M. A.
Barrios
,
S.
Baton
,
C.
Blancard
,
R.
Devriendt
, and
M.
Primout
, “
Rayleigh–Taylor mixing may account for the position anomaly in NIF microdot spectroscopy experiments
,”
Phys. Plasmas
28
,
042704
(
2021
).
51.
S.
Skupsky
, ““
Coulomb logarithm” for inverse-bremsstrahlung laser absorption
,”
Phys. Rev. A
36
,
5701
(
1987
).
52.
R.
Devriendt
and
O.
Poujade
, “
Classical molecular dynamic simulations and modeling of inverse bremsstrahlung heating in low Z weakly coupled plasmas
,”
Phys. Plasmas
29
,
073301
(
2022
).
53.
S.
Laffite
and
P.
Loiseau
, “
Design of an ignition target for the laser megajoule, mitigating parametric instabilities
,”
Phys. Plasmas
17
,
102704
(
2010
).
54.
Y.
Saillard
, “
Implosion and ignition theories of high gain targets
,” in
Proceedings of the First International Conference on Inertial Fusion Sciences and Applications (IFSA)
, edited by
C.
Labaune
,
W.
Hogan
, and
K.
Tanaka
(
IFSA
,
Bordeaux
,
1999
), p.
110
.
55.
Y.
Saillard
,
P.
Arnault
, and
V.
Silvert
, “
Principles of the radiative ablation modeling
,”
Phys. Plasmas
17
,
123302
(
2010
).
56.
J. L.
Bourgade
,
B.
Villette
,
J. L.
Bocher
,
J. Y.
Boutin
,
S.
Chiche
,
N.
Dague
,
D.
Gontier
,
J. P.
Jadaud
,
B.
Savale
,
R.
Wrobel
, and
R. E.
Turner
, “
DMX: An absolutely calibrated time-resolved broadband soft x-ray spectrometer designed for MJ class laser-produced plasmas (invited)
,”
Rev. Sci. Instrum.
72
,
1173
(
2001
).
57.
J. D.
Moody
,
O. L.
Landen
,
L.
Divol
,
S.
LePape
,
P.
Michel
,
R. P. J.
Town
,
G.
Hall
,
K.
Widmann
, and
A.
Moore
, “
Semi-empirical “leaky-bucket” model of laser-driven x-ray cavities
,”
Phys. Plasmas
24
,
042709
(
2017
).
58.
C.
Cherfils-Clerouin
,
C.
Boniface
,
M.
Bonnefille
,
E.
Dattolo
,
D.
Galmiche
,
P.
Gauthier
,
J.
Giorla
,
S.
Laffite
,
S.
Liberatore
,
P.
Loiseau
,
G.
Malinie
,
L.
Masse
,
P. E.
Masson-Laborde
,
M. C.
Monteil
,
F.
Poggi
,
P.
Seytor
,
F.
Wagon
, and
J. L.
Willien
, “
Progress on LMJ targets for ignition
,”
Plasma Phys. Controlled Fusion
51
,
124018
(
2009
).
59.
C.
Cherfils-Clerouin
,
C.
Boniface
,
M.
Bonnefille
,
P.
Fremerye
,
D.
Galmiche
,
P.
Gauthier
,
J.
Giorla
,
F.
Lambert
,
S.
Laffite
,
S.
Liberatore
,
P.
Loiseau
,
G.
Malinie
,
L.
Masse
,
P. E.
Masson-Laborde
,
M. C.
Monteil
,
F.
Poggi
,
P.
Seytor
,
F.
Wagon
, and
J. L.
Willien
, “
Progress on LMJ targets for ignition
,”
J. Phys.
244
,
022009
(
2010
).
60.
D. E.
Hinkel
,
D. A.
Callahan
,
A. B.
Langdon
,
S. H.
Langer
,
C. H.
Still
, and
E. A.
Williams
, “
Analyses of laser-plasma interactions in National Ignition Facility ignition targets
,”
Phys. Plasmas
15
,
056314
(
2008
).
61.
C. L.
Tang
, “
Saturation and spectral characteristics of the stokes emission in the stimulated Brillouin process
,”
J. Appl. Phys.
37
,
2945
(
1966
).
62.
T.
Dewandre
,
J. R.
Albritton
, and
E. A.
Williams
, “
Doppler shift of laser light reflected from expanding plasmas
,”
Phys. Fluids
24
,
528
(
1981
).
63.
P. E.
Masson-Laborde
,
S.
Hüller
,
D.
Pesme
,
C.
Casanova
,
P.
Loiseau
, and
Ch.
Labaune
, “
Modeling parametric scattering instabilities in large-scale expanding plasmas
,”
J. Phys. IV
133
,
247
(
2006
).
64.
S.
Hüller
,
P. E.
Masson-Laborde
,
D.
Pesme
,
C.
Labaune
, and
H.
Bandulet
, “
Modeling of stimulated Brillouin scattering in expanding plasmas
,”
J. Phys.
112
,
022031
(
2008
).
65.
P. E.
Masson-Laborde
,
S.
Hüller
,
D.
Pesme
,
C.
Labaune
,
S.
Depierreux
,
P.
Loiseau
, and
H.
Bandulet
,
Phys. Plasmas
21
,
032703
(
2014
).
66.
C.
Ruyer
,
A.
Fusaro
,
A.
Debayle
,
R.
Capdessus
,
P.
Loiseau
, and
P. E.
Masson-Laborde
, “
Influence of a random phase plate on the growth of the backward stimulated Brillouin scatter
,”
Phys. Rev. E
107
,
035208
(
2023
).
67.
H.
Brysk
, “
Fusion neutron energies and spectra
,”
Plasma Phys.
15
,
611
(
1973
).
68.
R. A.
Lerche
and
B. A.
Remington
, “
Detector distance selection for neutron time-of-flight temperature measurements
,”
Rev. Sci. Instrum.
61
,
3131
(
1990
).
69.
J. F.
Drake
,
P. K.
Kaw
,
Y. C.
Lee
,
G.
Schmid
,
C. S.
Liu
, and
M. N.
Rosenbluth
, “
Parametric instabilities of electromagnetic waves in plasmas
,”
Phys. Fluids
17
,
778
(
1974
).
70.
P.
Michel
,
L.
Divol
,
E. A.
Williams
,
C. A.
Thomas
,
D. A.
Callahan
,
S.
Weber
,
S. W.
Haan
,
J. D.
Salmonson
,
N. B.
Meezan
,
O. L.
Landen
et al, “
Energy transfer between laser beams crossing in ignition hohlraums
,”
Phys. Plasmas
16
,
042702
(
2009
).
71.
B. D.
Fried
,
M.
Gell-Mann
,
J. D.
Jackson
, and
H. W.
Wyld
, “
Longitudinal plasma oscillations in an electric field
,”
J. Nucl. Energy, Part C
1
,
190
(
1960
).
72.
P.
Michel
,
L.
Divol
,
E. A.
Williams
,
S.
Weber
,
C. A.
Thomas
,
D. A.
Callahan
,
S. W.
Haan
,
J. D.
Salmonson
,
S.
Dixit
,
D. E.
Hinkel
et al, “
Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer
,”
Phys. Rev. Lett.
102
,
025004
(
2009
).
73.
P.
Michel
,
S. H.
Glenzer
,
L.
Divol
,
D. K.
Bradley
,
D.
Callahan
,
S.
Dixit
,
S.
Glenn
,
D.
Hinkel
,
R. K.
Kirkwood
,
J. L.
Kline
et al, “
Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility
,”
Phys. Plasmas
17
,
056305
(
2010
).
74.
C.
Neuville
,
C.
Baccou
,
A.
Debayle
,
P.-E.
Masson-Laborde
,
S.
Hüller
,
M.
Casanova
,
D.
Marion
,
P.
Loiseau
,
K.
Glize
,
C.
Labaune
, and
S.
Depierreux
, “
Spatial and transient effects during the amplification of a picosecond pulse beam by a nanosecond pump
,”
Phys. Rev. Lett.
117
,
145001
(
2016
).
75.
D. J. Y.
Marion
,
A.
Debayle
,
P.-E.
Masson-Laborde
,
P.
Loiseau
, and
M.
Casanova
, “
Modeling crossed-beam energy transfer for inertial confinement fusion
,”
Phys. Plasmas
23
,
052705
(
2016
).
You do not currently have access to this content.