The field reversed configuration (FRC), such as studied in the C-2W experiment at TAE Technologies, is an attractive candidate for realizing a nuclear fusion reactor. In an FRC, kinetic ion effects play the majority role in macroscopic stability, which allows global stability studies to make use of fluid-kinetic hybrid (also referred to as Ohm's law) models wherein ions are treated kinetically while electrons are treated as a fluid. The development and validation of such a hybrid particle-in-cell algorithm in the Exascale Computing Project code WarpX are reported here. Implementation of this model in the WarpX framework benefits from the numerical efficiency of WarpX as well as its scalability on large HPC systems and portability to different architectures. Performance benchmarks of the new algorithm for large, 3-dimensional, full device simulations from the Perlmutter supercomputer are presented. Results of a series of FRC simulations are discussed in which the impact of two-fluid effects on the tilt-mode growth rate was studied. It was observed that, in agreement with previous Hall-MHD studies, two-fluid effects have a stabilizing impact on the tilt mode.

1.
Bringing Fusion to the U.S. Grid
.
National Academies of Sciences, Engineering, and Medicine
(
The National Academies Press
,
Washington, DC
,
2021
).
2.
S. E.
Wurzel
and
S. C.
Hsu
, “
Progress toward fusion energy breakeven and gain as measured against the Lawson criterion
,”
Phys. Plasmas
29
,
062103
(
2022
).
3.
C. L.
Smith
and
S.
Cowley
, “
The path to fusion power
,”
Philos. Trans. R. Soc., A
368
,
1091
1108
(
2010
).
4.
J.
Sheffield
, “
Physics requirements for an attractive magnetic fusion reactor
,”
Nucl. Fusion
25
,
1733
(
1985
).
5.
H.
Momota
,
M.
Okamoto
,
Y.
Nomura
,
M.
Ohnishi
,
K.
yoshikawa
,
Y.
Yamamoto
,
H. L.
Berk
,
T.
Tajima
,
A.
Ishida
,
K.
Sato
,
S.
Ohi
, and
G. H.
Miley
, “
Advanced fuels in a field-reversed configuration
,”
Fusion Technol.
11
,
436
450
(
1987
).
6.
S. V.
Putvinski
,
D. D.
Ryutov
, and
P. N.
Yushmanov
, “
Fusion reactivity of the pB11 plasma revisited
,”
Nucl. Fusion
59
(
7
),
076018
(
2019
).
7.
M.
Tuszewski
, “
Field reversed configurations
,”
Nucl. Fusion
28
(
11
),
2033
(
1988
).
8.
L. C.
Steinhauer
, “
Review of field-reversed configurations
,”
Phys. Plasmas
18
(
7
),
070501
(
2011
).
9.
H.
Gota
,
M. W.
Binderbauer
,
T.
Tajima
,
A.
Smirnov
,
S.
Putvinski
,
M.
Tuszewski
,
S. A.
Dettrick
,
D. K.
Gupta
,
S.
Korepanov
,
R. M.
Magee
,
J.
Park
,
T.
Roche
,
J. A.
Romero
,
E.
Trask
,
X.
Yang
,
P.
Yushmanov
,
K.
Zhai
,
T.
DeHaas
,
M. E.
Griswold
,
S.
Gupta
,
S.
Abramov
,
A.
Alexander
,
I.
Allfrey
,
R.
Andow
,
B.
Barnett
,
M.
Beall
,
N. G.
Bolte
,
E.
Bomgardner
,
A.
Bondarenko
,
F.
Ceccherini
,
L.
Chao
,
R.
Clary
,
A.
Cooper
,
C.
Deng
,
A.
Dunaevsky
,
P.
Feng
,
C.
Finucane
,
D.
Fluegge
,
L.
Galeotti
,
S.
Galkin
,
K.
Galvin
,
E. M.
Granstedt
,
K.
Hubbard
,
I.
Isakov
,
M.
Kaur
,
J. S.
Kinley
,
A.
Korepanov
,
S.
Krause
,
C. K.
Lau
,
A.
Lednev
,
H.
Leinweber
,
J.
Leuenberger
,
D.
Lieurance
,
D.
Madura
,
J.
Margo
,
D.
Marshall
,
R.
Marshall
,
T.
Matsumoto
,
V.
Matvienko
,
M.
Meekins
,
W.
Melian
,
R.
Mendoza
,
R.
Michel
,
Y.
Mok
,
M.
Morehouse
,
R.
Morris
,
L.
Morton
,
M.
Nations
,
A.
Necas
,
S.
Nicks
,
G.
Nwoke
,
M.
Onofri
,
A.
Ottaviano
,
R.
Page
,
E.
Parke
,
K.
Phung
,
G.
Player
,
I.
Sato
,
T. M.
Schindler
,
J. H.
Schroeder
,
D.
Sheftman
,
A.
Sibley
,
A.
Siddiq
,
M.
Signorelli
,
M.
Slepchenkov
,
R. J.
Smith
,
G.
Snitchler
,
V.
Sokolov
,
Y.
Song
,
L. C.
Steinhauer
,
V.
Stylianou
,
J.
Sweeney
,
J. B.
Titus
,
A.
Tkachev
,
M.
Tobin
,
J.
Ufnal
,
T.
Valentine
,
A. D. V.
Drie
,
J.
Ward
,
C.
Weixel
,
C.
White
,
M.
Wollenberg
,
S.
Ziaei
,
L.
Schmitz
,
Z.
Lin
,
A. A.
Ivanov
,
T.
Asai
,
E. A.
Baltz
,
M.
Dikovsky
,
W. D.
Heavlin
,
S.
Geraedts
,
I.
Langmore
,
P. C.
Norgaard
,
R. V.
Behren
,
T.
Madams
,
A.
Kast
,
J. C.
Platt
, and
t. T. Team
. “
Overview of C-2W: High temperature, steady-state beam-driven field-reversed configuration plasmas
,”
Nucl. Fusion
61
(
10
),
106039
(
2021
).
10.
See https://science.osti.gov/-/media/fes/fesac/pdf/2008/Toroidal_alternates_panel_report.pdf for “
Report of the FESAC toroidal alternates panel
” (
2008
).
11.
S.
Dettrick
,
F.
Ceccherini
,
L.
Galeotti
,
D.
Barnes
,
A.
Necas
,
V.
Guerrero
, and
D.
Hendrix
, “
FPIC: A key next step for stability studies of advanced beam driven FRCs
,” in
57th Annual Meeting of the APS Division of Plasma Physics
, Savannah, GA,
2015
.
12.
F.
Ceccherini
,
S.
Dettrick
,
D.
Barnes
, and
L.
Galeotti
, “
FPIC study of the n=1 toroidal mode in FRC plasmas
,” in
58th Annual Meeting of the APS Division of Plasma Physics
, San Jose, CA,
2016
.
13.
F.
Ceccherini
,
L.
Galeotti
,
S.
Dettrick
,
D.
Barnes
, and
K.
Hubbard
, and
TAE Team
. “
Onset of tilt instability in FRC plasmas
,” in
60th Annual Meeting of the APS Division of Plasma Physics
, Portland, OR,
2018
.
14.
F.
Ceccherini
,
L.
Galeotti
,
S.
Dettrick
,
D.
Barnes
, and
K.
Hubbard
, “
Simulation of fast ion effects on global stability of C-2W equilibria
,” in
61st Annual Meeting of the APS Division of Plasma Physics
, Fort Lauderdale, FL,
2019
.
15.
F.
Ceccherini
,
L.
Galeotti
,
C.
Lau
,
D.
Barnes
,
S.
Dettrick
, and
K.
Hubbard
,
T. Team
. “
Evolution and consequences of orbit type distributions in FRCs
,” in
63rd Annual Meeting of the APS Division of Plasma Physics
, Pittsburgh, PA,
2021
.
16.
S.
Dettrick
, “
Kinetic simulation of FRC stability and transport
” (
Argonne National Laboratory
,
2018
).
17.
Y.
Omelchenko
, “
Kinetic simulations of the formation and stability of the field-reversed configuration
,”
Phys. Plasmas
7
,
1443
1451
(
2000
).
18.
E.
Belova
,
S.
Jardin
,
H.
Ji
,
M.
Yamada
, and
R.
Kulsrud
, “
Numerical study of tilt stability of prolate field-reversed configurations
,”
Phys. Plasmas
7
,
4996
5006
(
2000
).
19.
Y. A.
Omelchenko
and
H.
Karimabadi
, “
HYPERS: A unidimensional asynchronous framework for multiscale hybrid simulations
,”
J. Comput. Phys.
231
,
1766
1780
(
2012
).
20.
R.
Milroy
,
A.
Macnab
,
C.
Kim
, and
C.
Sovinec
, “
FRC simulations using the NIMROD code
,”
J. Fusion Energy
27
(
1-2
),
73
76
(
2008
).
21.
Y. A.
Omelchenko
,
M. J.
Schaffer
, and
P. B.
Parks
, “
Nonlinear stability of field-reversed configurations with self-generated toroidal field
,”
Phys. Plasmas
8
,
4463
4469
(
2001
).
22.
E. V.
Belova
,
R. C.
Davidson
,
H.
Ji
, and
M.
Yamada
, “
Kinetic effects on the stability properties of field-reversed configurations. II. Nonlinear evolution
,”
Phys. Plasmas
11
(
5
),
2523
2531
(
2004
).
23.
Y. A.
Omelchenko
, “
Formation, spin-up, and stability of field-reversed configurations
,”
Phys. Rev. E
92
,
023105
(
2015
).
24.
H. Y.
Guo
,
M. W.
Binderbauer
,
T.
Tajima
,
R. D.
Milroy
,
L. C.
Steinhauer
,
X.
Yang
,
E. G.
Garate
,
H.
Gota
,
S.
Korepanov
,
A.
Necas
,
T.
Roche
,
A.
Smirnov
, and
E.
Trask
, “
Achieving a long-lived high-beta plasma state by energetic beam injection
,”
Nat. Commun.
6
,
6897
(
2015
).
25.
S.
Dettrick
et al, “
Integrated modeling of stability and transport of FRC plasmas
,” in
61st Annual Meeting of the APS Division of Plasma Physics
, Fort Lauderdale, FL,
2019
.
26.
J.-L.
Vay
,
A.
Almgren
,
J.
Bell
,
L.
Ge
,
D. P.
Grote
,
M.
Hogan
,
O.
Kononenko
,
R.
Lehe
,
A.
Myers
,
C.
Ng
,
J.
Park
,
R.
Ryne
,
O.
Shapoval
,
M.
Thévenet
, and
W.
Zhang
, “
Warp-X: A new exascale computing platform for beam–plasma simulations
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
909
,
476
479
(
2018
).
27.
L.
Fedeli
,
A.
Huebl
,
F.
Boillod-Cerneux
,
T.
Clark
,
K.
Gott
,
C.
Hillairet
,
S.
Jaure
,
A.
Leblanc
,
R.
Lehe
,
A.
Myers
,
C.
Piechurski
,
M.
Sato
,
N.
Zaim
,
W.
Zhang
,
J.-L.
Vay
, and
H.
Vincenti
, “
Pushing the frontier in the design of laser-based electron accelerators with groundbreaking mesh-refined particle-in-cell simulations on exascale-class supercomputers
,” in
SC22: International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2022
) pp.
1
12
.
28.
E. V.
Belova
,
E. D.
Fredrickson
,
J. B.
Lestz
,
N. A.
Crocker
, and
NSTX-U Team
, “
Numerical simulations of global Alfvén eigenmodes excitation and stabilization in NSTX-U
,”
Phys. Plasmas
26
,
092507
(
2019
).
29.
J. B.
Lestz
,
E. V.
Belova
, and
N. N.
Gorelenkov
, “
Hybrid simulations of sub-cyclotron compressional and global Alfvén eigenmode stability in spherical tokamaks
,”
Nucl. Fusion
61
,
086016
(
2021
).
30.
H.
Karimabadi
,
D.
Krauss-Varban
,
J. D.
Huba
, and
H. X.
Vu
, “
On magnetic reconnection regimes and associated three-dimensional asymmetries: Hybrid, Hall-less hybrid, and Hall-MHD simulations
,”
J. Geophys. Res.: Space Phys.
109
,
A09205
, https://doi.org/10.1029/2004JA010478 (
2004
).
31.
A.
Le
,
W.
Daughton
,
H.
Karimabadi
, and
J.
Egedal
, “
Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy
,”
Phys. Plasmas
23
,
032114
(
2016
).
32.
J. P.
Sauppe
and
C. R.
Sovinec
, “
Two-fluid and finite Larmor radius effects on helicity evolution in a plasma pinch
,”
Phys. Plasmas
23
,
032303
(
2016
).
33.
L.
Arzamasskiy
,
M. W.
Kunz
,
J.
Squire
,
E.
Quataert
, and
A. A.
Schekochihin
, “
Kinetic turbulence in collisionless high-β plasmas
,”
Phys. Rev. X
13
,
021014
(
2023
).
35.
W.
Zhang
,
A.
Almgren
,
V.
Beckner
,
J.
Bell
,
J.
Blaschke
,
C.
Chan
,
M.
Day
,
B.
Friesen
,
K.
Gott
,
D.
Graves
,
M.
Katz
,
A.
Myers
,
T.
Nguyen
,
A.
Nonaka
,
M.
Rosso
,
S.
Williams
, and
M.
Zingale
, “
AMReX: A framework for block-structured adaptive mesh refinement
,”
J. Open Source Softw.
4
,
1370
(
2019
).
36.
A.
Myers
,
A.
Almgren
,
L. D.
Amorim
,
J.
Bell
,
L.
Fedeli
,
L.
Ge
,
K.
Gott
,
D. P.
Grote
,
M.
Hogan
,
A.
Huebl
,
R.
Jambunathan
,
R.
Lehe
,
C.
Ng
,
M.
Rowan
,
O.
Shapoval
,
M.
Thévenet
,
J.-L.
Vay
,
H.
Vincenti
,
E.
Yang
,
N.
Zaïm
,
W.
Zhang
,
Y.
Zhao
, and
E.
Zoni
, “
Porting WarpX to GPU-accelerated platforms
,”
Parallel Comput.
108
,
102833
(
2021
).
37.
C. C.
Haggerty
and
D.
Caprioli
, “
dHybridR: A hybrid particle-in-cell code including relativistic ion dynamics
,”
Astrophys. J.
887
,
165
(
2019
).
38.
C. W.
NIELSON
and
H. R.
LEWIS
, “
Particle-code models in the nonradiative limit
,” in
Controlled Fusion
, Methods in Computational Physics: Advances in Research and Applications, Vol.
16
, edited by
J.
Killeen
(
Elsevier
,
1976
), pp.
367
388
.
39.
A. S.
Lipatov
,
The Hybrid Multiscale Simulation Technology
(
Springer
Berlin Heidelberg
,
2002
), Chap. 2.
40.
T. Z.
Esirkepov
, “
Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor
,”
Comput. Phys. Commun.
135
(
2
),
144
153
(
2001
).
41.
D.
Winske
,
L.
Yin
,
N.
Omidi
,
H.
Karimabadi
, and
K.
Quest
, “
Hybrid simulation codes: Past, present and future—A tutorial
,” in
Space Plasma Simulation
, edited by
J.
Büchner
,
M.
Scholer
, and
C. T.
Dum
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2003
), pp.
136
165
.
42.
J. P.
Boris
, “
Relativistic plasma simulation-optimization of a hybrid code
,” in
Proceeding of Fourth Conference on Numerical Simulations of Plasmas
,
1970
.
43.
R. E.
Groenewald
,
A.
Necas
,
S.
Nicks
,
D.
Barnes
,
F.
Ceccherini
, and
S.
Dettrick
, “
A hybrid PIC algorithm in WarpX
,” in
Presented at Sherwood Fusion Theory Conference
,
2023
.
44.
A.
Veksler
,
R. E.
Groenewald
,
F.
Ceccherini
,
A.
Necas
,
D. C.
Barnes
,
C.
Woicekowski
,
R.
Lehe
, and
S.
Dettrick
, “
Reactor-scale, 3D FRC simulations with WarpX's new hybrid-PIC solver
,” in
65th Annual Meeting of the APS Division of Plasma Physics
, Denver, CO,
2023
.
46.
D. S.
Harned
, “
Quasineutral hybrid simulation of macroscopic plasma phenomena
,”
J. Comput. Phys.
47
,
452
462
(
1982
).
47.
A. P.
Matthews
, “
Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations
,”
J. Comput. Phys.
112
,
102
116
(
1994
).
48.
R.
Goldston
and
P.
Rutherford
,
Introduction to Plasma Physics
(
Taylor & Francis
,
1995
).
49.
T.
Amano
,
K.
Higashimori
, and
K.
Shirakawa
, “
A robust method for handling low density regions in hybrid simulations for collisionless plasmas
,”
J. Comput. Phys.
275
,
197
212
(
2014
).
50.
P. A.
Muñoz
,
N.
Jain
,
P.
Kilian
, and
J.
Büchner
, “
A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation
,”
Comput. Phys. Commun.
224
,
245
264
(
2018
).
52.
J. J.
Rasmussen
, “
Electrostatic waves and instabilities in homogeneous, magnetized plasmas
,” in
Waves and Instabilities in Plasmas
, edited by
F.
Cap
(
Springer Vienna
,
Vienna
,
1994
), pp.
117
170
.
53.
A. L.
Verdon
,
I. H.
Cairns
,
D. B.
Melrose
, and
P. A.
Robinson
, “
Properties of lower hybrid waves
,”
Proc. Int. Astron. Union
4
,
569
573
(
2008
).
54.
S.
Ichimaru
,
Basic Principles of Plasma Physics
(
W. J. Benjamin, Inc
.,
Reading, MA
,
1973
).
55.
A. W.
Carlson
, “
A search for lower–hybrid–drift fluctuations in a field–reversed configuration using CO2 heterodyne scattering
,”
Phys. Fluids
30
,
1497
1509
(
1987
).
56.
L.
Landau
,
J. Phys. USSR
10
,
26
(
1946
).
57.
M. W.
Kunz
,
J. M.
Stone
, and
X.-N.
Bai
, “
Pegasus: A new hybrid-kinetic particle-in-cell code for astrophysical plasma dynamics
,”
J. Comput. Phys.
259
,
154
174
(
2014
).
58.
B. D.
Fried
and
S. D.
Conte
,
The Plasma Dispersion Function: The Hilbert Transform of the Gaussian
(
Academic Press
,
2015
).
59.
T.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
1992
).
60.
A.
Friedman
,
R. N.
Sudan
, and
J.
Denavit
, “
A linearized 3D hybrid code for stability studies of field-reversed ion rings
,”
J. Comput. Phys.
40
,
1
35
(
1981
).
61.
Y. A.
Omelchenko
and
R. N.
Sudan
, “
A 3-D Darwin-EM hybrid PIC code for ion ring studies
,”
J. Comp. Phys.
133
,
146
159
(
1997
).
63.
A.
Stanier
,
L.
Chacón
, and
A.
Le
, “
A cancellation problem in hybrid particle-in-cell schemes due to finite particle size
,”
J. Comput. Phys.
420
,
109705
(
2020
).
64.
A Hankel transform was applied to the radial component of the field due to the cylindrical geometry of this case.
65.
M.
Rosenbluth
and
M.
Bussac
, “
MHD stability of spheromak
,”
Nucl. Fusion
19
,
489
(
1979
).
66.
Calculated using the external magnetic field strength and the maximum plasma density in the FRC.
67.
L. C.
Steinhauer
and
T. P.
Intrator
, “
Equilibrium paradigm for field-reversed configurations and application to experiments
,”
Phys. Plasmas
16
(
7
),
072501
(
2009
).
68.
E. V.
Belova
,
R. C.
Davidson
,
H.
Ji
, and
M.
Yamada
, “
Kinetic effects on the stability properties of field-reversed configurations. I. Linear stability
,”
Phys. Plasmas
10
(
6
),
2361
2371
(
2003
).
69.
A.
Ishida
,
H.
Momota
, and
L. C.
Steinhauer
, “
Variational formulation for a multifluid flowing plasma with application to the internal tilt mode of a field–reversed configuration
,”
Phys. Fluids
31
,
3024
3034
(
1988
).
70.
D.
Barnes
, “
Stability of long field-reversed configurations
,”
Phys. Plasmas
9
,
560
568
(
2002
).
71.
E. V.
Belova
,
S. C.
Jardin
,
H.
Ji
,
R. M.
Kulsrud
,
W.
Park
, and
M.
Yamada
,
Global Stability of the Field Reversed Configuration
(
International Atomic Energy Agency
,
Sorrento, Italy
,
2000
).
72.
L.
Galeotti
,
D.
Barnes
,
F.
Ceccherini
, and
F.
Pegoraro
, “
Plasma equilibria with multiple ion species: Equations and algorithm
,”
Phys. Plasmas
18
(
8
),
082509
(
2011
).
73.
A test with α = 1 confirmed that the simulation results matched double precision calculations.
74.
H.
Ohtani
,
R.
Horiuchi
, and
T.
Sato
, “
Self-generation of hollow current profile and tilt instability in field-reversed configuration
,”
Phys. Plasmas
10
,
145
156
(
2003
).
75.
M. C.
Spraker
,
M. W.
Ahmed
,
M. A.
Blackston
,
N.
Brown
,
R. H.
France
,
S. S.
Henshaw
,
B. A.
Perdue
,
R. M.
Prior
,
P.-N.
Seo
,
S.
Stave
, and
H. R.
Weller
, “
The 11B(p,α)8Be α + α and the 11B(α,α)11B reactions at energies below 5.4 MeV
,”
J. Fusion Energy
31
(
4
),
357
367
(
2012
).
76.
M. H.
Sikora
and
H. R.
Weller
, “
A new evaluation of the 11B(p,α)αα reaction rates
,”
J. Fusion Energy
35
,
538
543
(
2016
).
77.
NVIDIA Whitepaper
, see https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf for A100 GPUs achieve 9.7 TFLOPS peak performance for double precision and 19.5 TFLOPS for single precision operations.
78.
W. F.
Godoy
,
N.
Podhorszki
,
R.
Wang
,
C.
Atkins
,
G.
Eisenhauer
,
J.
Gu
,
P.
Davis
,
J.
Choi
,
K.
Germaschewski
,
K.
Huck
,
A.
Huebl
,
M.
Kim
,
J.
Kress
,
T.
Kurc
,
Q.
Liu
,
J.
Logan
,
K.
Mehta
,
G.
Ostrouchov
,
M.
Parashar
,
F.
Poeschel
,
D.
Pugmire
,
E.
Suchyta
,
K.
Takahashi
,
N.
Thompson
,
S.
Tsutsumi
,
L.
Wan
,
M.
Wolf
,
K.
Wu
, and
S.
Klasky
, “
ADIOS 2: The Adaptable Input Output System. A framework for high-performance data management
,”
SoftwareX
12
,
100561
(
2020
).
80.
GitHub
.
2018
. “ECP-WarpX/WarpX,”
GitHub
. https://github.com/ECP-WarpX/WarpX.git
You do not currently have access to this content.