Electromagnetic waves are an inherent part of all plasmas—laboratory fusion plasmas or astrophysical plasmas. The conventional methods for studying properties of electromagnetic waves rely on discretization of Maxwell equations suitable for implementing on classical, present day, computers. The traditional methodology is not efficient for quantum computing implementation—a future computational source offering a tantalizing possibility of enormous speed up and a significant reduction in computational cost. This paper addresses two topics relevant to implementing Maxwell equations on a quantum computer. The first is on formulating a quantum Schrödinger representation of Maxwell equations for wave propagation in a cold, inhomogeneous, and magnetized plasma. This representation admits unitary, energy preserving, evolution and conveniently lends itself to appropriate discretization for a quantum computer. Riding on the coattails of these results, the second topic is on developing a sequence of unitary operators which form the basis for a qubit lattice algorithm (QLA). The QLA, suitable for quantum computers, can be implemented and tested on existing classical computers for accuracy as well as scaling of computational time with the number of available processors. In order to illustrate the QLA for Maxwell equations, results are presented from a time evolving, full wave simulation of propagation and scattering of an electromagnetic wave packet by non-dispersive dielectric medium localized in space.

1.
T. H.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
1992
).
2.
D. G.
Swanson
,
Plasma Waves
(
Institute of Physics Publishing
,
2003
).
3.
L.
Friedland
and
I. B.
Bernstein
, “
General geometric optics formalism in plasmas
,”
IEEE Trans. Plasma Sci.
8
,
90
95
(
1980
).
4.
C.
Tsironis
, “
On the simplification of the modeling of electron-cyclotron wave propagation in thermonuclear fusion plasmas
,”
Prog. Electromagn. Res. B
47
,
37
61
(
2013
).
5.
C.
Lau
,
E. F.
Jaeger
,
N.
Bertelli
,
L. A.
Berry
,
D. L.
Green
,
M.
Murakami
,
J. M.
Park
,
R. I.
Pinsker
, and
R.
Prater
, “
AORSA full wave calculations of helicon waves in DIII-D and ITER
,”
Nucl. Fusion
58
,
066004
(
2018
).
6.
Y.
Wu
,
W.-S.
Bao
,
S.
Cao
,
F.
Chen
,
M.-C.
Chen
,
X.
Chen
,
T.-H.
Chung
,
H.
Deng
,
Y.
Du
,
D.
Fan
et al, “
Strong quantum computational advantage using a superconducting quantum processor
,”
Phys. Rev. Lett.
127
,
180501
(
2021
).
7.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G. S. L.
Brandao
,
D. A.
Buell
et al, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
8.
I. Y.
Dodin
and
E. A.
Startsev
, “
On applications of quantum computing to plasma simulations
,”
Phys. Plasmas
28
,
092101
(
2021
).
9.
I.
Joseph
,
Y.
Shi
,
M. D.
Porter
,
A. R.
Castelli
,
V. I.
Geyko
,
F. R.
Graziani
,
S. B.
Libby
, and
J. L.
DuBois
, “
Quantum computing for fusion energy science applications
,”
Phys. Plasmas
30
,
010501
(
2023
).
10.
A.
Engel
,
G.
Smith
, and
S. E.
Parker
, “
Quantum algorithm for the Vlasov equation
,”
Phys. Rev. A
100
,
062315
(
2019
).
11.
I.
Novikau
,
E. A.
Startsev
, and
I. Y.
Dodin
, “
Quantum signal processing for simulating cold plasma waves
,”
Phys. Rev. A
105
,
062444
(
2022
).
12.
G. H.
Low
and
I. L.
Chuang
, “
Optimal hamiltonian simulation by quantum signal processing
,”
Phys. Rev. Lett.
118
,
010501
(
2017
).
13.
A.
Ameri
,
E.
Ye
,
P.
Cappellaro
,
H.
Krovi
, and
N. F.
Loureiro
, “
Quantum algorithm for the linear Vlasov equation with collisions
,”
Phys. Rev. A
107
,
062412
(
2023
).
14.
O.
Amaro
and
D.
Cruz
, “
A living review of quantum computing for plasma physics
,” arXiv:2302.00001 [physics.plasm-ph] (
2023
).
15.
E.
Koukoutsis
,
K.
Hizanidis
,
A. K.
Ram
, and
G.
Vahala
, “
Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media
,”
Phys. Rev. A
107
,
042215
(
2023
).
16.
S.
Succi
,
F.
Fillion-Gourdeau
, and
S.
Palpacelli
, “
Quantum lattice Boltzmann is a quantum walk
,”
EPJ Quantum Technol.
2
,
12
(
2015
).
17.
F.
Fillion-Gourdeau
,
S.
MacLean
, and
R.
Laflamme
, “
Algorithm for the solution of the Dirac equation on digital quantum computers
,”
Phys. Rev. A
95
,
042343
(
2017
).
18.
G.
Vahala
,
M.
Soe
,
E.
Koukoutsis
,
K.
Hizanidis
,
L.
Vahala
, and
A. K.
Ram
, “
Qubit lattice algorithms based on the Schrödinger–Dirac representation of Maxwell equations and their extensions
,” in
Schrödinger Equation—Fundamentals Aspects and Potential Applications
, edited by
D. M. B.
Tahir
,
D. M.
Sagir
,
A. P. M. I.
Khan
,
D. M.
Rafique
, and
D. F.
Bulnes
(
IntechOpen
,
Rijeka
,
2023
), Chap. 5.
19.
G.
Vahala
,
L.
Vahala
,
M.
Soe
, and
A. K.
Ram
, “
One- and two-dimensional quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media I: Theory
,”
Radiat. Eff. Defects Solids
176
,
49
63
(
2021
).
20.
G.
Vahala
,
L.
Vahala
,
M.
Soe
, and
A. K.
Ram
, “
Unitary quantum lattice simulations for Maxwell equations in vacuum and in dielectric media
,”
J. Plasma Phys.
86
,
905860518
(
2020
).
21.
G.
Vahala
,
J.
Hawthorne
,
L.
Vahala
,
A. K.
Ram
, and
M.
Soe
, “
Quantum lattice representation for the curl equations of Maxwell equations
,”
Radiat. Eff. Defects Solids
177
,
85
94
(
2022
).
22.
A. K.
Ram
,
G.
Vahala
,
L.
Vahala
, and
M.
Soe
, “
Reflection and transmission of electromagnetic pulses at a planar dielectric interface: Theory and quantum lattice simulations
,”
AIP Adv.
11
,
105116
(
2021
).
23.
G.
Vahala
,
M.
Soe
,
L.
Vahala
,
A. K.
Ram
,
E.
Koukoutsis
, and
K.
Hizanidis
, “
Qubit lattice algorithm simulations of Maxwell's equations for scattering from anisotropic dielectric objects
,”
Comput. Fluids
266
,
106039
(
2023
).
24.
G.
Vahala
,
J.
Yepez
, and
L.
Vahala
, “
Quantum lattice gas representation of some classical solitons
,”
Phys. Lett. A
310
,
187
196
(
2003
).
25.
L.
Vahala
,
G.
Vahala
,
M.
Soe
,
A.
Ram
, and
J.
Yepez
, “
Unitary qubit lattice algorithm for three-dimensional vortex solitons in hyperbolic self-defocusing media
,”
Commun. Nonlinear Sci. Numer. Simul.
75
,
152
159
(
2019
).
26.
B. M.
Boghosian
and
W.
Taylor
, “
Simulating quantum mechanics on a quantum computer
,”
Phys. D
120
,
30
42
(
1998
).
27.
J.
Yepez
and
B.
Boghosian
, “
An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation
,”
Comput. Phys. Commun.
146
,
280
294
(
2002
).
28.
J.
Yepez
, “
An efficient and accurate quantum algorithm for the Dirac equation
,” arXiv:Quant-ph/0210093 [quant-ph] (
2002
).
29.
M. G.
Silveirinha
, “
Chern invariants for continuous media
,”
Phys. Rev. B
92
,
125153
(
2015
).
30.
M.
Cassier
,
P.
Joly
, and
M.
Kachanovska
, “
Mathematical models for dispersive electromagnetic waves: An overview
,”
Comput. Math. Appl.
74
,
2792
2830
(
2017
).
31.
J. H.
Lee
and
D. K.
Kalluri
, “
Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma
,”
IEEE Trans. Antennas Propag.
47
,
1146
1151
(
1999
).
32.
S. A.
Khan
, “
An exact matrix representation of Maxwell's equations
,”
Phys. Scr.
71
,
440
(
2005
).
33.
I.
Novikau
,
I.
Dodin
, and
E.
Startsev
, “
Simulation of linear non-Hermitian boundary-value problems with quantum singular-value transformation
,”
Phys. Rev. Appl.
19
,
054012
(
2023
).
34.
S. S.
Bullock
and
I. L.
Markov
, “
Asymptotically optimal circuits for arbitrary n-qubit diagonal comutations
,”
Quantum Inf. Comput.
4
,
27
47
(
2004
).
35.
A. M.
Childs
,
R.
Kothari
, and
R. D.
Somma
, “
Quantum algorithm for systems of linear equations with exponentially improved dependence on precision
,”
SIAM J. Comput.
46
,
1920
1950
(
2017
).
36.
J.
Taylor
,
S.
Smith
, and
J.
Yepez
, “
Spin-2 BEC spinor superfluid soliton–soliton scattering in one and two space dimensions
,” arXiv:1907.12834 [cond-mat.quant-gas] (
2019
).
37.
A. K.
Ram
and
K.
Hizanidis
, “
Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas
,”
Phys. Plasmas
23
,
022504
(
2016
).
38.
A. K.
Ram
,
K.
Hizanidis
, and
Y.
Kominis
, “
Scattering of radio frequency waves by blobs in tokamak plasmas
,”
Phys. Plasmas
20
,
056110
(
2013
).
39.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
1998
).
You do not currently have access to this content.