The insulation recovery during repetitive breakdowns in gas gaps is a fundamental scientific issue in both traditional and emerging electrical technology fields, which has received extensive attention over the years. This paper provides a systematic review of research methods for insulation recovery in repetitive breakdowns of gas gaps, progress made in understanding the thermal–hydrodynamic processes involved in this recovery (dissipation of deposited energy and restoration of neutral gas density), as well as the memory effect resulting from repetitive discharges and breakdowns (dominant factors and their underlying mechanisms). Based on current results, it is proposed that the insulation recovery of repetitive gas gaps breakdowns results from the synergistic effect between post-breakdown thermal-hydrodynamic processes and memory effects. This review aims to clarify the boundary and interplay between hydrodynamic processes and memory effects, as well as reveal their coupling relationship and synergistic mechanism. It also seeks to overcome barriers between related research fields, ultimately facilitating a resolution to the issue.

1.
Z.
Cheng
,
R.
Wang
,
P.
Yan
, and
T.
Shao
, “
Atmospheric-pressure pulsed discharges and plasmas: Mechanism, characteristics and applications
,”
High Voltage
3
(
1
),
14
20
(
2018
).
2.
R.
Jinno
,
A.
Komuro
,
H.
Yanai
, and
R.
Ono
, “
Antitumor abscopal effects in mice induced by normal tissue irradiation using pulsed streamer discharge plasma
,”
J. Phys. D: Appl. Phys.
55
(
17
),
17LT01
(
2022
).
3.
H.
Shintani
,
Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
(
Caister Academic Press
,
Tokyo
,
2016
).
4.
B.
Huang
,
C.
Zhang
,
I.
Adamovich
,
Y.
Akishev
, and
T.
Shao
, “
Surface ionization wave propagation in the nanosecond pulsed surface dielectric barrier discharge: The influence of dielectric material and pulse repetition rate
,”
Plasma Sources Sci. Technol.
29
(
4
),
044001
(
2020
).
5.
C.
Zhang
,
B.
Huang
,
Z.
Luo
,
X.
Che
,
Y.
Ping
, and
T.
Shao
, “
Atmospheric-pressure pulsed plasma actuators for flow control: Shock wave and vortex characteristics
,”
Plasma Sources Sci. Technol.
28
(
6
),
064001
(
2019
).
6.
Y.
Ju
and
W.
Sun
, “
Plasma assisted combustion: Dynamics and chemistry
,”
Prog. Energy Combust. Sci.
48
,
21
83
(
2015
).
7.
S. M.
Starikovskaia
, “
Plasma-assisted ignition and combustion: Nano-second discharges and development of kinetic mechanisms
,”
J. Phys. D: Appl. Phys.
47
(
35
),
353001
(
2014
).
8.
X.
Wang
,
Y.
Gao
,
S.
Zhang
,
H.
Sun
, and
T.
Shao
, “
Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters
,”
Appl. Energy
243
,
132
144
(
2019
).
9.
H.
Zhang
,
K.
Li
,
C.
Shu
,
Z.
Lou
,
T.
Sun
, and
J.
Jia
, “
Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor
,”
Chem. Eng. J.
256
,
107
118
(
2014
).
10.
P.
Cong
, “
Review of Chinese pulsed power science and technology
,”
High Power Laser Part. Beams
32
(
2
),
025002
(
2020
). (in Chinese).
11.
L.
Li
,
Z.
Zhao
,
Y.
Liu
,
C.
Li
,
J.
Ren
, and
J.
Li
, “
Repetitive gas-discharge closing switches for pulsed power applications
,”
IEEE Trans. Plasma Sci.
47
(
9
),
4237
4249
(
2019
).
12.
K.
Frank
,
B.
Lee
,
I.
Petzenhauser
, and
H.
Rahaman
, “
Do gas-filled switches still have a future?
,”
IEEE International Conference on Plasma Science
, 17–22 June 2007, Albuquerque, NM (
2007
), pp.
432
437
.
13.
X.
Xie
,
C.
Zhou
,
X.
Wei
,
W.
Hu
, and
Q.
Ren
, “
Laser machining of transparent brittle materials: From machining strategies to applications
,”
Opto-Electron. Adv.
2
(
1
),
18001701
18001713
(
2019
).
14.
J.
Jacoba
,
P.
Shanmugavelub
, and
R.
Balasubramaniam
, “
Investigation of the performance of 248 nm excimer laser assisted photoresist removal process in gaseous media by response surface methodology and artificial neural network
,”
J. Manuf. Process.
38
(
10
),
516
529
(
2019
).
15.
N.
Sarvipour
,
Z.
Akbari
,
M.
Shafie'ei
,
M.
Jamali
,
M.
Ahmadzade
, and
N.
Ahramiyanpour
, “
Lasers for the treatment of erythema, dyspigmentation, and decreased elasticity in macular acne scars: A systematic review
,”
Lasers Med. Sci.
37
,
3321
3331
(
2022
).
16.
Q.
Zhang
,
K. J.
Walsh
,
C.
Melis
,
G. B.
Hughes
, and
P. M.
Lubin
, “
Orbital Simulations on Deflecting Near-Earth Objects by Directed Energy
,”
Publ. Astron. Soc. Pac.
128
,
045001
(
2016
).
17.
J.
Miao
,
T.
Ishikawa
,
I. K.
Robinson
, and
M. M.
Murnane
, “
Beyond crystallography: Diffractive imaging using coherent x-ray light sources
,”
Science
348
(
6234
),
530
535
(
2015
).
18.
Z.
Peng
,
K.
Liu
,
Y.
Nan
,
F.
Yang
,
S.
Wang
,
H.
Sun
, and
L. A.
Yuan
, “
Coupling model of AC filter branch in SF6 circuit breaker during the break process
,”
Plasma Sci. Technol.
22
(
12
),
125402
(
2020
).
19.
X.
Cheng
,
P.
Yang
,
G.
Ge
,
Q.
Wu
, and
W.
Xie
, “
Dynamic dielectric recovery performance of serial vacuum and SF6 gaps in HVDC interruption and its regulation method
,”
Plasma Sci. Technol.
21
(
7
),
074010
(
2019
).
20.
F.
Wang
,
W.
Liu
,
X.
Lin
,
Y.
Xia
, and
J.
Xu
, “
Study on the mathematical model of dielectric recovery characteristics in high voltage SF6 circuit breaker
,”
Plasma Sci. Technol.
18
(
3
),
223
229
(
2016
).
21.
L.
Li
,
B.
Wang
,
C.
Yi
,
X.
Xu
,
G.
Xu
, and
Y.
Feng
, “
Factors and underlying mechanisms that influence the repetitive breakdown characteristics of corona-stabilized switches
,”
Appl. Sci.
13
,
9518
(
2023
).
22.
X.
Jiang
,
X.
Li
,
H.
Zhao
, and
S.
Jia
, “
Analysis of the dielectric breakdown characteristics for a 252-kV gas circuit breaker
,”
IEEE Trans. Power Delivery
28
(
3
),
1592
1599
(
2013
).
23.
M.
Seeger
,
M.
Schwinne
,
R.
Bini
,
N.
Mahdizadeh
, and
T.
Votteler
, “
Dielectric recovery in a high-voltage circuit breaker in SF6
,”
J. Phys. D: Appl. Phys.
45
(
39
),
395204
(
2012
).
24.
X.
Lin
,
F.
Wang
,
K.
Feng
,
Y.
Sui
,
J.
Zhong
,
J.
Xu
,
Y.
Xia
, and
Z.
Geng
, “
Study on dielectric strength recovery mechanism of high voltage SF6 circuit breaker
,”
Proc. CSEE
37
(
20
),
6118
6125
(
2017
). (in Chinese).
25.
X.
Li
,
W.
Liu
,
Y.
Xu
, and
D.
Ding
, “
Discharge characteristics and detectability of metal particles on the spacer surface in gas-insulated switchgears
,”
IEEE Trans. Power Delivery
37
(
1
),
187
196
(
2022
).
26.
J.
Wang
,
Q.
Hu
,
Y.
Chang
,
J.
Wang
,
R.
Liang
,
Y.
Tu
,
C.
Li
, and
Q.
Li
, “
Metal particle contamination in gas-insulated switchgears/gas-insulated transmission lines
,”
CSEE J. Power Energy Syst.
7
(
5
),
1011
1025
(
2021
).
27.
L.
Li
,
J.
Li
,
Z.
Zhao
, and
C.
Li
, “
Effect of pressure on repetitive performance a corona-stabilized plasma closing switch
,”
Phys. Plasmas
27
(
2
),
023508
(
2020
).
28.
Y.
Xiao
,
Y.
Wu
,
Y.
Wu
,
F.
Yang
, and
M.
Rong
, “
Study on the dielectric recovery strength of vacuum interrupter in MVDC circuit breaker
,”
IEEE Trans. Instrum. Meas.
69
(
9
),
7158
7166
(
2020
).
29.
S.
Mirpour
,
A.
Martinez
,
J.
Teunissen
,
U.
Ebert
, and
S.
Nijdam
, “
Distribution of inception times in repetitive pulsed discharges in synthetic air
,”
Plasma Sources Sci. Technol.
29
,
115010
(
2020
).
30.
S.
Nijdam
,
E.
Takahashi
,
A. H.
Markosyan
, and
U.
Ebert
, “
Investigation of positive streamers by double-pulse experiments, effects of repetition rate and gas mixture
,”
Plasma Sources Sci. Technol.
23
,
025008
(
2014
).
31.
L.
Li
,
Z.
Huang
, and
J.
Li
, “
Effect of gas type on insulation recovery performance and repetitive breakdown stability of a corona-stabilized plasma closing switch
,”
J. Appl. Phys.
128
(
7
),
073302
(
2020
).
32.
Y.
Li
,
E. M.
Veldhuizen
,
G.
Zhang
,
U.
Ebert
, and
S.
Nijdam
, “
Positive double-pulse streamers: How pulse-to-pulse delay influences initiation and propagation of subsequent discharges
,”
Plasma Sources Sci. Technol.
27
(
12
),
102578
(
2018
).
33.
Z.
Zhao
and
J.
Li
, “
Repetitively pulsed gas discharges: Memory effect and discharge mode transition
,”
High Voltage
5
(
5
),
569
582
(
2020
).
34.
Z.
Zhao
,
Z.
Huang
,
X.
Zheng
,
C.
Li
,
A.
Sun
, and
J.
Li
, “
Evolutions of repetitively pulsed positive streamer discharge in electronegative gas mixtures at high pressure
,”
Plasma Sources Sci. Technol.
31
,
075006
(
2022
).
35.
D.
Pai
,
G.
Stancu
,
D.
Lacoste
, and
C.
Laux
, “
Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime
,”
Plasma Sources Sci. Technol.
18
,
045030
(
2009
).
36.
Z.
Zhao
,
D.
Huang
,
Y.
Wang
,
J.
He
,
C.
Li
,
Y.
Wang
, and
J.
Li
, “
Evolution of streamer dynamics and discharge mode transition in high-pressure nitrogen under long-term repetitive nanosecond pulses with different timescales
,”
Plasma Sources Sci. Technol.
28
(
8
),
085015
(
2019
).
37.
X.
Cai
,
X.
Zou
,
X.
Wang
,
L.
Wang
,
Z.
Guan
, and
W.
Jiang
, “
Recovery of gas density in a nitrogen gap after breakdown
,”
Appl. Phys. Lett.
97
,
101501
(
2010
).
38.
B.
Singh
,
L.
Rajendran
,
P.
Vlachos
, and
S.
Bane
, “
Two regime cooling in flow induced by a spark discharge
,”
Phys. Rev. Fluids
5
,
014501
(
2020
).
39.
Z.
Wang
,
Y.
Tian
,
H.
Ma
,
Y.
Geng
, and
Z.
Liu
, “
Dielectric recovery strength after vacuum arc extinctions
,”
XXVI International Symposium on Discharges and Electrical Insulation in Vacuum
, 28 September–3 October 2014, Mumbai, India (
2014
), pp.
333
336
.
40.
J.
Retter
and
G.
Elliott
, “
On the possibility of simultaneous temperature, species, and electric field measurements by coupled hybrid fs/ps CARS and EFISHG
,”
Appl. Opt.
58
(
10
),
2557
(
2019
).
41.
Y.
Tanaka
, “
Prediction of dielectric properties of N2/O2 mixtures in the temperature range of 300∼3500 K
,”
J. Phys. D: Appl. Phys.
37
(
6
),
851
859
(
2004
).
42.
W.
Wang
,
J. D.
Yan
,
M.
Rong
,
A. B.
Murphy
, and
J. W.
Spencer
, “
Thermophysical properties of high temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. Part 2: Transport coefficients
,”
Plasma Chem. Plasma Process.
32
(
3
),
495
518
(
2012
).
43.
V.
Aubrecht
and
M.
Bartlova
, “
Net emission coefficients of radiation in air and SF6 thermal plasmas
,”
Plasma Chem. Plasma Process.
29
(
2
),
131
147
(
2009
).
44.
F.
Yang
,
Z.
Chen
,
Y.
Wu
,
M.
Rong
, and
C.
Wang
, “
Two-temperature transport coefficients of SF6–N2 plasma
,”
Phys. Plasmas
22
,
103508
(
2015
).
45.
M.
Akram
and
E.
Lundgren
, “
The evolution of spark discharges in gases: I. Macroscopic models
,”
J. Phys. D: Appl. Phys.
29
,
2129
2136
(
1996
).
46.
V. N.
Desnianskii
and
E. A.
Novikov
, “
Simulation of cascade processes in turbulent flows
,”
J. Appl. Math. Mech.
38
(
3
),
507
513
(
1974
).
47.
N. L.
Aleksandrov
,
E. M.
Bazelyan
, and
M. N.
Shneider
, “
Effect of continuous current during pauses between successive strokes on the decay of the lightning channel
,”
Plasma Phys. Rep.
26
,
893
(
2000
).
48.
R. W.
Liebermann
and
J. J.
Lowke
, “
Radiation emission coefficients for sulphur hexafluoride arc plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
16
(
3
),
253
264
(
1976
).
49.
S. D.
Eby
,
J. Y.
Trepanier
, and
X.
Zhang
, “
Modelling radiative transfer in SF6 circuit-breaker arcs with the P1 approximation
,”
J. Phys. D: Appl. Phys.
31
(
13
),
1578
1588
(
1998
).
50.
W.
Wang
,
J. D.
Yan
,
M.
Rong
,
Y.
Wu
, and
J. W.
Spencer
, “
Investigation of SF6 arc characteristics under shock condition in a supersonic nozzle with hollow contact
,”
IEEE Trans. Plasma Sci.
41
(
4
),
915
928
(
2013
).
51.
X.
Cheng
,
P.
Yang
,
G.
Ge
,
L.
Yao
, and
W.
Xie
, “Investigation on dielectric recovery characteristics of CO2 gas circuit breakers with current commutation regulation,”
IEEE Trans. Plasma Sci.
47
(
11
),
5070
5077
(
2019
).
52.
H. S.
Uhm
,
E.
Choi
,
G.
Cho
, and
H.
Ryu
, “
Breakdown temperature of electrons in SF6 gas
,”
Appl. Phys. Lett.
97
(
16
),
161501
(
2010
).
53.
H.
Zhao
,
X.
Li
,
S.
Jia
, and
A. B.
Murphy
, “
Dielectric breakdown properties of SF6-N2 mixtures at 0.01–1.6 MPa and 300–3000 K
,”
J. Appl. Phys.
113
(
14
),
143301
(
2013
).
54.
J.
Li
,
Y.
Cao
,
E.
Wang
,
X.
Liu
, and
J.
Zou
, “
Particle-in-cell simulation of gas disruption in short gap of circuit breaker
,”
Proc. CSEE
30
(
16
),
125
130
(
2010
).
55.
C.
Huang
,
X.
Liu
,
H.
Chen
, and
Z.
Shan
, “
Investigation on dielectric recovery strength for the DC-VCB with multi-breaks
,”
International Symposium on Discharges & Electrical Insulation in Vacuum
, 18–23 September 2016, Suzhou, China (
2016
).
56.
S. B.
Leonov
,
Y. I.
Isaenkov
,
A. A.
Firsov
,
S. L.
Nothnagel
,
S.
Gimelshein
, and
M. N.
Shneider
, “
Jet regime of the after-spark channel decay
,”
Phys. Plasmas
17
(
5
),
053505
(
2010
).
57.
N. M.
Shneider
, “
Turbulent decay of after-spark channels
,”
Phys. Plasmas
13
(
7
),
073501
(
2006
).
58.
M.
Akram
, “
The evolution of spark discharges in gases: II. Numerical solution of one-dimensional models
,”
J. Phys. D: Appl. Phys.
29
(
8
),
2137
2147
(
1996
).
59.
P.
Bayle
,
M.
Bayle
, and
G.
Forn
, “
Blast wave propagation in glow to spark transition in air
,”
J. Phys. D: Appl. Phys.
18
(
12
),
2417
2432
(
1985
).
60.
J.
VonNeumann
and
R. D.
Richtmyer
, “
A Method for the numerical calculation of hydrodynamic shocks
,”
J. Appl. Phys.
21
(
3
),
232
237
(
1950
).
61.
M. N.
Plooster
, “
Shock waves from line sources. Numerical solutions and experimental measurements
,”
Phys. Fluids
13
,
2665
2675
(
1970
).
62.
M. N.
Plooster
, “
Numerical simulation of spark discharges in air
,”
Phys. Fluids
14
,
2111
2123
(
1971
).
63.
M. N.
Plooster
, “
Numerical model of the return stroke of the lightning discharge
,”
Phys. Fluids
14
,
2124
2133
(
1971
).
64.
W. F.
Noh
, “
Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux
,”
J. Comput. Phys.
72
,
78
120
(
1978
).
65.
D. L.
Book
,
J. P.
Boris
, and
K.
Hain
, “
Flux-corrected transport II: Generalizations of the method
,”
J. Comput. Phys.
18
(
3
),
248
283
(
1975
).
66.
J. P.
Boris
and
D. L.
Book
, “
Flux-Corrected Transport III: minimal-error FCT algorithms
,”
J. Comput. Phys.
20
(
4
),
397
431
(
1976
).
67.
E. E.
Kunhardt
and
C.
Wu
, “
Towards a more accurate flux corrected transport algorithm
,”
J. Comput. Phys.
68
(
1
),
127
150
(
1987
).
68.
M.
Akram
, “
Two-dimensional model for spark discharge simulation in air
,”
AIAA J.
34
(
9
),
1835
1842
(
1996
).
69.
L.
Jones
,
G.
Goyer
, and
M. N.
Plooster
, “
Shock wave from a lightning discharge
,”
J. Geophys. Res.
73
(
10
),
3121
3127
, https://doi.org/10.1029/JB073i010p03121 (
1968
).
70.
C.
Gomes
and
V.
Cooray
, “
Correlation between the optical signatures and current wave forms of long sparks: Applications in lightning research
,”
J. Electrost.
3
(
4
),
267
274
(
1998
).
71.
T. E.
Allibone
and
D.
Dring
, “
Lightning and the long spark; The significance of leader-stroke velocity
,”
Proc. R. Soc. Lond. A
357
,
15
35
(
1977
).
72.
W.
Wang
,
M.
Rong
, and
Y.
Wu
, “
Transport coefficients of high temperature SF6–He mixtures used in switching applications as an alternative to pure SF6
,”
Plasma Chem. Plasma Process.
34
,
899
916
(
2014
).
73.
S. B.
Leonov
and
D. A.
Yarantsev
, “
Instability in post-discharge thermal cavity
,”
IEEE Trans. Plasma Sci.
36
(
4
),
978
979
(
2008
).
74.
D.
Xu
,
D.
Lacoste
,
D. L.
Rusterholtz
,
P.
Elias
,
G. D.
Stancu
, and
C. O.
Laux
, “
Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air
,”
Appl. Phys. Lett.
99
,
121502
(
2011
).
75.
B.
Singh
,
L. K.
Rajendran
,
M.
Giarra
,
P. P.
Vlachos
, and
S.
Bane
, “
Measurement of the flow field induced by a spark plasma using particle image velocimetry
,”
Exp. Fluids
59
,
179
(
2018
).
76.
L.
Ge
,
J.
Zhong
,
C.
Bao
, and
R. D.
Doncker
, “
Continuous rotor position estimation for SRM based on transformed unsaturated inductance characteristic
,”
IEEE Trans Power Electron.
37
(
1
),
37
41
(
2022
).
77.
N. L.
Aleksandrov
and
E. M.
Bazelyan
, “
The mechanism of re-breakdown within a post-arc channel in long non-uniform air gaps
,”
J. Phys. D: Appl. Phys.
31
(
11
),
1343
1351
(
1998
).
78.
M. N.
Shneider
, “
Turbulent cooling of the gas and dielectric recovery following a spark discharge
,”
Tech. Phys.
43
(
2
),
159
164
(
1998
).
79.
Q.
Zhang
,
J.
Liu
,
J. D.
Yan
, and
M. T. C.
Fang
, “
The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc
,”
J. Phys. D: Appl. Phys.
49
(
33
),
335501
(
2016
).
80.
Q.
Zhang
,
J.
Yan
, and
M. T. C.
Fang
, “
The modelling of an SF6 arc in a supersonic nozzle: I. Cold flow features and dc arc characteristics
,”
J. Phys. D: Appl. Phys.
47
(
21
),
215201
(
2014
).
81.
J.
Yan
,
K. I.
Nuttall
, and
M. T. C.
Fang
, “
A comparative study of turbulence models for SF6 arcs in a supersonic nozzle
,”
J. Phys. D: Appl. Phys.
32
(
12
),
1401
(
1999
).
82.
R.
Bini
,
N. T.
Basse
, and
M.
Seeger
, “
Arc induced turbulent mixing in an SF6 circuit breaker model
,”
J. Phys. D: Appl. Phys.
44
(
2
),
025203
(
2011
).
83.
R.
Bini
,
B.
Galletti
,
A.
Iordanidis
,
M.
Schwinne
, and
T.
WerderSchläpfer
, “
CFD in circuit breaker research & development
,”
2011 1st International Conference on Electric Power Equipment—Switching Technology
(23–27 October 2011, Xi'an, China).
84.
J.
Zhang
,
M. T. C.
Fang
, and
D. B.
Newland
, “
Theoretical investigation of a 2 kA arc in a supersonic nozzle
,”
J. Phys. D: Appl. Phys.
20
(
3
),
368
379
(
1987
).
85.
V.
Aubrecht
and
J. J.
Lowke
, “
Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics
,”
J. Phys. D: Appl. Phys.
27
(
10
),
2066
2073
(
1994
).
86.
A.
Starikovskiy
,
S. V.
Pancheshnyi
, and
A. E.
Rakitin
, “
Periodic pulse discharge self-focusing and streamer-to-spark transition in under-critical electric field
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
Orlando, Florida
,
2011
).
87.
K.
Orr
,
X.
Yang
,
I.
Gulko
, and
I. V.
Adamovich
, “
Formation and propagation of ionization waves during ns pulse breakdown in plane-to-plane geometry
,”
Plasma Sources Sci. Technol.
29
(
12
),
11
(
2020
).
88.
J.
Q
,
C.
Zhang
,
Z.
Liu
,
Y.
Gao
,
D.
Hu
, and
T.
Shao
, “
Propagation of ionization waves in nanosecond-pulse dielectric barrier discharge in atmospheric air
,”
IEEE Trans. Plasma Sci.
46
(
6
),
1943
1950
(
2018
).
89.
J.
Yan
,
M. T. C.
Fang
, and
Q.
Liu
, “
Dielectric recovery of a residual SF6 plasma between two parallel plane electrodes
,”
IEEE Trans. Dielectr. Electr. Insul.
8
(
1
),
129
136
(
2001
).
90.
J.
Yang
,
H.
Liu
,
J.
Jiang
,
B.
Li
,
T.
Lv
, and
L.
Ji
, “
Study on dielectric recovery strength of high voltage SF6 circuit breaker for no-load interruption
,”
2018 China International Conference on Electricity Distribution
, 17–19 September 2018, Tianjin, China (
2018
), pp.
932
936
.
91.
Q.
Zhang
,
J. D.
Yan
, and
M. T. C.
Fang
, “
Current zero behaviour of an SF6 nozzle arc under shock conditions
,”
J. Phys. D: Appl. Phys.
46
,
165203
(
2013
).
92.
X.
Cai
,
L.
Wang
,
X.
Zou
,
X.
Wang
, and
W.
Jiang
, “
Overvolted breakdown and recovery of gas spark gap
,”
2010 IEEE International Power Modulator and High Voltage Conference
(23–27 May 2010, Atlanta, GA, 2010), pp.
541
544
.
93.
S. J.
MacGregor
,
F. A.
Tuema
,
S. M.
Turnbull
, and
O.
Farish
, “
The operation of repetitive high-pressure spark gap switches
,”
J. Phys. D: Appl. Phys.
26
(
6
),
954
958
(
1999
).
94.
Z.
Zhao
,
Z.
Dai
,
A.
Sun
, and
J.
Li
, “
Streamer to precursor transition in N2–SF6 mixtures under positive repetitive sub-microsecond pulses
,”
High Volt.
7
(
2
),
382
389
(
2022
).
95.
D.
Wang
and
T.
Namihira
, “
Nanosecond pulsed streamer discharges: II. Physics, discharge characterization and plasma processing
,”
Plasma Sources Sci. Technol.
29
,
023001
(
2020
).
96.
T.
Huiskamp
, “
Nanosecond pulsed streamer discharges Part I: Generation, source-plasma interaction and energy-efficiency optimization
,”
Plasma Sources Sci. Technol.
29
,
023002
(
2020
).
97.
D.
Pai
,
D. A.
Lacoste
, and
C. O.
Laux
, “
Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure
,”
J. Appl. Phys.
107
(
9
),
093303
(
2010
).
98.
T.
Shao
,
G.
Sun
,
P.
Yan
,
J.
Wang
,
W.
Yuan
,
Y.
Sun
, and
S.
Zhang
, “
An experimental investigation of repetitive nanosecond-pulse breakdown in air
,”
J. Phys. D: Appl. Phys.
39
(
10
),
2192
2197
(
2006
).
99.
T.
Shao
,
G.
Sun
,
P.
Yan
,
J.
Wang
,
W.
Yuan
, and
S.
Zhang
, “
Breakdown phenomena in nitrogen due to repetitive nanosecond-pulses
,”
IEEE Trans. Dielectr. Electr. Insul.
14
(
4
),
813
819
(
2007
).
100.
F.
Tholin
and
A.
Bourdon
, “
Influence of temperature on the glow regime of a discharge in air at atmospheric pressure between two point electrodes
,”
J. Phys. D: Appl.
44
(
38
),
385203
(
2011
).
101.
Y. S.
Akishev
,
G.
Aponin
,
A.
Balakirev
,
M.
Grushin
,
V.
Karalnik
,
A.
Petryakov
, and
N. I.
Trushkin
, “
Memory' and sustention of microdischarges in a steady-state DBD: Volume plasma or surface charge?
,”
Plasma Sources Sci. Technol.
20
(
2
),
024005
(
2011
).
102.
A.
Lo
,
A.
Cessou
,
C.
Lacour
,
B.
Lecordier
,
P.
Boubert
,
D.
Xu
,
C. O.
Laux
, and
P.
Vervisch
, “
Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air
,”
Plasma Sources Sci. Technol.
26
(
4
),
101466
(
2017
).
103.
G.
Wormeester
,
S.
Pancheshnyi
,
A.
Luque
,
S.
Nijdam
, and
U.
Ebert
, “
Probing photo-ionization: Simulations of positive streamers in varying N2:O2-mixtures
,”
J. Phys. D: Appl. Phys.
43
(
50
),
505201
(
2010
).
104.
S.
Nijdam
,
G.
Wormeester
,
E. M. V.
Veldhuizen
, and
U.
Ebert
, “
Probing background ionization: Positive streamers with varying pulse repetition rate and with a radioactive admixture
,”
J. Phys. D: Appl. Phys.
44
(
45
),
455201
(
2011
).
105.
S.
Mirpour
and
S.
Nijdam
, “
Investigating CO2 streamer inception in repetitive pulsed discharges
,”
Plasma Sources Sci. Technol.
31
(
5
),
055007
(
2022
).
106.
T.
Matsumoto
,
T.
Omori
,
R.
Sasamoto
,
T.
Ihara
,
Y.
Izawa
, and
K.
Nishijima
, “
Localized residual heat and formation of nonbranched positive streamer with highly repetitive streamer discharge
,”
IEEE Trans. Plasma Sci.
44
(
1
),
1
8
(
2015
).
107.
S.
Nijdam
,
J.
Teunissen
,
E.
Takahashi
, and
U.
Ebert
, “
The role of free electrons in the guiding of positive streamers
,”
Plasma Sources Sci. Technol.
25
(
4
),
044001
(
2016
).
108.
S.
Nijdam
,
J.
Teunissen
, and
U.
Ebert
, “
The physics of streamer discharge phenomena
,”
Plasma Sources Sci. Technol.
29
(
10
),
103656
(
2020
).
109.
X.
Chen
,
Y.
Zhu
, and
Y.
Wu
, “
Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage
,”
Plasma Sources Sci. Technol.
29
(
9
),
103730
(
2020
).
110.
C.
Zhang
,
T.
Shao
,
Y.
Zhou
, and
P.
Yan
, “
Nanosecond-pulse gliding discharges between point-to-point electrodes in open air
,”
Plasma Sources Sci. Technol.
23
(
3
),
035004
(
2014
).
111.
F.
Qi
,
Y.
Li
,
R.
Zhou
, and
R.
Zhou
, “
Uniform atmospheric pressure plasmas in a 7 mm air gap
,”
Appl. Phys. Lett.
115
(
19
),
194101
(
2019
).
112.
Z.
Zhao
and
J.
Li
, “
Integrated effect on evolution of streamer dynamics under long-term repetitive sub-microsecond pulses in high-pressure nitrogen
,”
Plasma Sources Sci. Technol.
28
(
12
),
115019
(
2019
).
113.
S.
Chen
,
L. C. J.
Heijmans
,
R.
Zeng
,
S.
Nijdam
, and
U.
Ebert
, “
Nanosecond repetitively pulsed discharges in N2-O2 mixtures: Inception cloud and streamer emergence
,”
J. Phys. D. Appl. Phys.
48
(
17
),
175201
(
2015
).
114.
X.
Yuan
,
H.
Li
,
M.
Abbas
,
X.
Li
,
Z.
Wang
,
G.
Zhang
, and
A.
Sun
, “
A 3D numerical study of positive streamers interacting with localized plasma regions
,”
J. Phys. D: Appl. Phys.
53
(
42
),
124707
(
2020
).
115.
Z.
Zhao
,
C.
Li
,
Y.
Guo
,
X.
Zheng
,
A.
Sun
, and
J.
Li
, “
Streamer dynamics and periodical discharge regime transitions under repetitive nanosecond pulses with airflow
,”
Plasma Sources Sci. Technol.
32
(
1
),
015002
(
2023
).
116.
Z.
Zhao
,
C.
Li
,
Y.
Guo
,
X.
Zheng
,
A.
Sun
, and
J.
Li
, “
Periodical discharge regime transitions under long-term repetitive nanosecond pulses
,”
Plasma Sources Sci. Technol.
31
(
4
),
045005
(
2022
).
117.
J.
Mankowski
,
J.
Dickens
, and
M.
Kristiansen
, “
High voltage subnanosecond breakdown
,”
IEEE Trans. Plasma Sci.
26
(
3
),
874
881
(
1998
).
118.
G.
Naidis
,
V.
Tarasenko
,
N.
Babaeva
, and
M.
Lomaev
, “
Subnanosecond breakdown in high-pressure gases
,”
Plasma Sources Sci. Technol.
27
(
1
),
013001
(
2018
).
119.
N.
Zubarev
and
S.
Ivanov
, “
Mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres
,”
Plasma Phys. Rep.
44
(
4
),
445
452
(
2018
).
120.
S.
Ivanov
,
V.
Lisenkov
, and
V.
Shpak
, “
Streak investigations of the initial phase of a subnanosecond pulsed electrical breakdown of high-pressure gas gaps
,”
J. Phys. D, Appl. Phys.
43
(
31
),
315204
(
2010
).
121.
T.
Shao
,
V.
Tarasenko
,
C.
Zhang
,
M.
Lomaev
,
D.
Sorokin
,
P.
Yan
,
A.
Kozyrev
, and
E.
Baksht
, “
Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation
,”
J. Appl. Phys.
111
(
2
),
023304
(
2012
).
122.
D.
Levko
,
R.
Arslanbekov
, and
V.
Kolobov
, “
Modified Paschen curves for pulsed breakdown
,”
Phys. Plasmas
26
(
6
),
064502
(
2019
).
123.
D.
Levko
, “
Mechanism of sub-nanosecond pulsed breakdown of pressurized nitrogen
,”
J. Appl. Phys.
126
(
8
),
083303
(
2019
).
124.
V.
Tarasenko
,
E.
Baksht
,
A.
Burachenko
, and
M.
Lomaev
, “
Characteristic radiation of nitrogen under subnanosecond breakdown in a highly nonuniform electric field near the positive-polarity electrode
,”
Plasma Phys. Rep.
43
(
7
),
792
795
(
2017
).
125.
S. L.
Moran
and
L. W.
Hardesty
, “
High-repetition-rate hydrogen spark gap
,”
IEEE Trans. Electron Devices
38
(
4
),
726
730
(
1991
).
126.
M. R.
Kazemi
,
T.
Sugai
,
A.
Tokuchi
, and
W.
Jiang
, “
Study of pulsed atmospheric discharge using solid-state LTD
,”
IEEE Trans. Plasma Sci.
45
(
8
),
2323
2327
(
2017
).
127.
M. M.
Pejović
,
E. N.
Živanović
,
M.
Pejovic
, and
J.
Karamarkovic
, “
Analysis of processes responsible for the memory effect in air at low pressures
,”
Plasma Sources Sci. Technol.
19
(
4
),
045021
(
2010
).
128.
H.
You
,
Q.
Zhang
,
J.
Ma
,
Y.
Qin
,
T.
Wen
,
C.
Guo
, and
Y.
Zhang
, “
Follow phenomenon of breakdown voltage in SF6 under lightning impulse
,”
IEEE Trans. Dielect. Electr. Insul.
23
(
5
),
2677
2684
(
2016
).
129.
B.
Huang
,
K.
Takashima
,
X.
Zhu
, and
Y.
Pu
, “
The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges
,”
J. Phys. D: Appl. Phys.
47
(
42
),
422003
(
2014
).
130.
J. M.
Koutsoubis
and
S. J.
MacGregor
, “
Effects of gas type on high repetition rate performance of a triggered, corona stabilized switch
,”
IEEE Trans. Dielectr. Electr. Insul.
10
(
2
),
245
255
(
2003
).
131.
L.
Li
,
J.
Li
, and
Z.
Zhao
, “
Effect of switch parameters and polarity on the repetitive performance of a corona-stabilized switch viewed from behavior of space charge
,”
Phys. Plasmas
27
(
4
),
043509
(
2020
).
132.
L.
Li
,
Z.
Huang
, and
Y.
Yang
, “
The influence of electric field inhomogeneity on repetitive performance of a corona-stabilized Switch
,”
IEEE Access
8
,
195515
195527
(
2020
).
133.
A. Y.
Starikovskiy
and
N. L.
Aleksandrov
, “
How pulse polarity and photoionization control streamer discharge development in long air gaps
,”
Plasma Sources Sci. Technol.
29
(
7
),
075004
(
2020
).
134.
W.
Wang
,
M.
Rong
,
J. D.
Yan
,
W.
Yi
, and
L.
Zhong
, “
Investigation of the dynamic characteristics and decaying behavior of SF6 arcs in high voltage circuit breakers during current-zero period: A review
,”
Proc. CSEE
35
(
8
),
2059
2072
(
2015
).
135.
T.
Qin
,
E.
Dong
,
G.
Liu
, and
J.
Zou
, “
Recovery of Dielectric Strength after DC Interruption in Vacuum
,”
IEEE Trans. Dielectr. Electr. Insul.
23
(
1
),
29
34
(
2016
).
136.
Y.
Cao
,
J.
Li
,
X.
Liu
,
C.
Hou
, and
E.
Wang
, “
Mechanism of arc discharge in vacuum interrupter based on PIC-MCC method
,”
High Voltage Eng.
37
(
11
),
2752
2757
(
2011
).
137.
Z.
Zhao
,
D.
Huang
,
Y.
Wang
,
C.
Li
, and
J.
Li
, “
Volume and surface memory effects on evolution of streamer dynamics along gas/solid interface in high-pressure nitrogen under long-term repetitive nanosecond pulses
,”
Plasma Sources Sci. Technol.
29
(
1
),
103182
(
2019
).
138.
F.
Tholin
and
A.
Bourdon
, “
Influence of the external electrical circuit on the regimes of a nanosecond repetitively pulsed discharge in air at atmospheric pressure
,”
Plasma Phys. Controlled Fusion
57
(
1
),
014016
(
2015
).
139.
A.
Starikovskiy
and
N. L.
Aleksandrov
, “
Blocking streamer development by plane gaseous layers of various densities
,”
Plasma Sources Sci. Technol.
29
(
3
),
103344
(
2019
).
You do not currently have access to this content.