It is generally believed that relativistically underdense plasmas are transparent for intense laser radiation. However, particle-in-cell simulations reveal abnormal laser field absorption above the intensity threshold of about 3 × 10 24 W cm 2 for the wavelength of 1 μ m. Above the threshold, the further increase in the laser intensity does not lead to an increase in the propagation distance. The simulations take into account emission of hard photons and subsequent pair photoproduction in the laser field. These effects lead to onset of a self-sustained quantum electromagnetic cascade and to formation of dense electron–positron ( e + e ) plasma right inside the laser field. The plasma absorbs the laser field efficiently, which ensures the plasma opacity. The role of a weak longitudinal electron–ion electric field in the cascade growth is discussed.

1.
M.
Tushentsov
,
A.
Kim
,
F.
Cattani
,
D.
Anderson
, and
M.
Lisak
, “
Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions
,”
Phys. Rev. Lett.
87
(
27
),
275002
(
2001
).
2.
V. I.
Eremin
,
A. V.
Korzhimanov
, and
A. V.
Kim
, “
Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: Why it occurs and its use for ultrashort electron bunch generation
,”
Phys. Plasmas
17
(
4
),
043102
(
2010
).
3.
S.
Palaniyappan
,
B. M.
Hegelich
,
H.-C.
Wu
,
D.
Jung
,
D. C.
Gautier
,
L.
Yin
,
B. J.
Albright
,
R. P.
Johnson
,
T.
Shimada
,
S.
Letzring
,
D. T.
Offermann
,
J.
Ren
,
C.
Huang
,
R.
Hörlein
,
B.
Dromey
,
J. C.
Fernandez
, and
R. C.
Shah
, “
Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas
,”
Nat. Phys.
8
,
763
769
(
2012
).
4.
S. M.
Weng
,
P.
Mulser
, and
Z. M.
Sheng
, “
Relativistic critical density increase and relaxation and high-power pulse propagation
,”
Phys. Plasmas
19
(
2
),
022705
(
2012
).
5.
F.
Cattani
,
A.
Kim
,
D.
Anderson
, and
M.
Lisak
, “
Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas
,”
Phys. Rev. E
62
(
1
),
1234
1237
(
2000
).
6.
E.
Lefebvre
and
G.
Bonnaud
, “
Transparency/opacity of a solid target illuminated by an ultrahigh-intensity laser pulse
,”
Phys. Rev. Lett.
74
(
11
),
2002
2005
(
1995
).
7.
E. N.
Nerush
,
I. Y.
Kostyukov
,
L.
Ji
, and
A.
Pukhov
, “
Gamma-ray generation in ultrahigh-intensity laser-foil interactions
,”
Phys. Plasmas
21
,
013109
(
2014
).
8.
C. S.
Brady
,
C. P.
Ridgers
,
T. D.
Arber
,
A. R.
Bell
, and
J. G.
Kirk
, “
Laser absorption in relativistically underdense plasmas by synchrotron radiation
,”
Phys. Rev. Lett.
109
(
24
),
245006
(
2012
).
9.
A.
Bell
and
J.
Kirk
, “
Possibility of prolific pair production with high-power lasers
,”
Phys. Rev. Lett.
101
(
20
),
200403
(
2008
).
10.
A. M.
Fedotov
,
N. B.
Narozhny
,
G.
Mourou
, and
G.
Korn
, “
Limitations on the attainable intensity of high power lasers
,”
Phys. Rev. Lett.
105
(
8
),
080402
(
2010
).
11.
N. V.
Elkina
,
A. M.
Fedotov
,
I. Y.
Kostyukov
,
M. V.
Legkov
,
N. B.
Narozhny
,
E. N.
Nerush
, and
H.
Ruhl
, “
QED cascades induced by circularly polarized laser fields
,”
Phys. Rev. Spec. Top.-Accel. Beams
14
(
5
),
054401
(
2011
).
12.
E. N.
Nerush
,
I. Y.
Kostyukov
,
A. M.
Fedotov
,
N. B.
Narozhny
,
N. V.
Elkina
, and
H.
Ruhl
, “
Laser field absorption in self-generated electron-positron pair plasma
,”
Phys. Rev. Lett.
106
(
3
),
035001
(
2011
).
13.
T.
Grismayer
,
M.
Vranic
,
J. L.
Martins
,
R. A.
Fonseca
, and
L. O.
Silva
, “
Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses
,”
Phys. Plasmas
23
(
5
),
056706
(
2016
).
14.
P.
Zhang
,
C. P.
Ridgers
, and
A. G. R.
Thomas
, “
The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas
,”
New J. Phys.
17
(
4
),
043051
(
2015
).
15.
E. N.
Nerush
and
I. Y.
Kostyukov
, “
Laser-driven hole boring and gamma-ray emission in high-density plasmas
,”
Plasma Phys. Controlled Fusion
57
(
3
),
035007
(
2015
).
16.
W.-M.
Wang
,
P.
Gibbon
,
Z.-M.
Sheng
,
Y.-T.
Li
, and
J.
Zhang
, “
Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects
,”
Phys. Rev. E
96
(
1
),
013201
(
2017
).
17.
A. S.
Samsonov
,
E. N.
Nerush
, and
I. Y.
Kostyukov
, “
Laser-driven vacuum breakdown waves
,”
Sci. Rep.
9
,
11133
(
2019
).
18.
A. A.
Mironov
,
E. G.
Gelfer
, and
A. M.
Fedotov
, “
Onset of electron-seeded cascades in generic electromagnetic fields
,” arXiv:2105.04476 (
2021
).
19.
E. G.
Gelfer
,
A. M.
Fedotov
,
O.
Klimo
, and
S.
Weber
, “
Absorption and opacity threshold for a thin foil in a strong circularly polarized laser field
,”
Phys. Rev. E
101
(
3
),
033204
(
2020
).
20.
L. L.
Ji
,
A.
Pukhov
,
I. Y.
Kostyukov
,
B. F.
Shen
, and
K.
Akli
, “
Radiation-reaction trapping of electrons in extreme laser fields
,”
Phys. Rev. Lett.
112
(
14
),
145003
(
2014
).
21.
L.
Ji
,
B.
Shen
, and
X.
Zhang
, “
Transparency of near-critical density plasmas under extreme laser intensities
,”
New J. Phys.
20
(
5
),
053043
(
2018
).
22.
R.
Capdessus
,
L.
Gremillet
, and
P.
McKenna
, “
High-density electron–ion bunch formation and multi-GeV positron production via radiative trapping in extreme-intensity laser–plasma interactions
,”
New J. Phys.
22
(
11
),
113003
(
2020
).
23.
24.
V. N.
Baier
,
V. M.
Katkov
, and
V. M.
Strakhovenko
,
Electromagnetic Processes at High Energies in Oriented Single Crystals
(
World Scientific
,
1998
).
25.
T.
Grismayer
,
M.
Vranic
,
J. L.
Martins
,
R. A.
Fonseca
, and
L. O.
Silva
, “
Seeded QED cascades in counterpropagating laser pulses
,”
Phys. Rev. E
95
(
2
),
023210
(
2017
).
26.
A. S.
Samsonov
,
E. N.
Nerush
, and
I. Y.
Kostyukov
, “
Asymptotic electron motion in the strongly-radiation-dominated regime
,”
Phys. Rev. A
98
(
5
),
053858
(
2018
).
27.
A.
Gonoskov
and
M.
Marklund
, “
Radiation-dominated particle and plasma dynamics
,”
Phys. Plasmas
25
(
9
),
093109
(
2018
).
28.
A. S.
Samsonov
,
E. N.
Nerush
, and
I. Y.
Kostyukov
, “
High-order corrections to the radiation-free dynamics of an electron in the strongly radiation-dominated regime
,”
Matter Radiat. Extremes
8
(
1
),
014402
(
2023
).
You do not currently have access to this content.