Understanding the origin and structure of mean magnetic fields in astrophysical conditions is a major challenge. Shear flows often coexist in such astrophysical conditions, and the role of flow shear on the dynamo mechanism is of great interest. Here, we present a direct numerical simulation study of the effect of flow shear on dynamo instability for EPI2D flows [Yoshida et al., Phys. Rev. Lett. 119, 244501 (2017)] with controllable mirror symmetry (i.e., fluid helicity). Our numerical observations suggest that for helical base flows, the effect of shear is to reduce the small-scale dynamo (SSD) growth rate moderately. For non-helical base flows, flow shear has the opposite effect of amplifying the SSD action. The magnetic energy growth rate (γ) for non-helical base flows has been found to follow an algebraic nature of the form, γ = a S + b S 2 3, where a , b > 0 are real constants, S is the shear flow strength, and γ is found to be independent of the scale of flow shear. Studies with different shear profiles and shear scale lengths for non-helical base flows have been performed to test the universality of our finding.

1.
E. N.
Parker
, “
Hydromagnetic dynamo models
,”
Astrophys. J.
122
,
293
(
1955
).
2.
E. N.
Parker
,
Cosmical Magnetic Fields
(
Clarendon
,
Oxford
,
1979
).
3.
F.
Rincon
, “
Dynamo theories
,”
J. Plasma Phys.
85
,
205850401
(
2019
).
4.
S.
Childress
and
A. D.
Gilbert
,
Stretch, Twist, Fold: The Fast Dynamo
(
Springer Science & Business Media
,
1995
), Vol.
37
.
5.
S. M.
Tobias
and
F.
Cattaneo
, “
Dynamo action in complex flows: The quick and the fast
,”
J. Fluid Mech.
601
,
101
122
(
2008
).
6.
G. K.
Batchelor
, “
On the spontaneous magnetic field in a conducting liquid in turbulent motion
,”
Proc. R. Soc. London, Ser. A
201
,
405
416
(
1950
).
7.
A. P.
Kazantsev
, “
Enhancement of a magnetic field by a conducting fluid
,”
Sov. Phys. JETP
26
,
1031
1034
(
1968
).
8.
Y. B.
Zel'Dovich
,
A. A.
Ruzmaikin
,
S. A.
Molchanov
, and
D. D.
Sokoloff
, “
Kinematic dynamo problem in a linear velocity field
,”
J. Fluid Mech.
144
,
1
11
(
1984
).
9.
M.
Meneguzzi
,
U.
Frisch
, and
A.
Pouquet
, “
Helical and nonhelical turbulent dynamos
,”
Phys. Rev. Lett.
47
,
1060
1064
(
1981
).
10.
A. A.
Schekochihin
,
S. C.
Cowley
,
S. F.
Taylor
,
J. L.
Maron
, and
J. C.
McWilliams
, “
Simulations of the small-scale turbulent dynamo
,”
Astrophys. J.
612
,
276
(
2004
).
11.
V.
Skoutnev
,
J.
Squire
, and
A.
Bhattacharjee
, “
Small-scale dynamo in stably stratified turbulence
,”
Astrophys. J.
906
,
61
(
2021
).
12.
V.
Skoutnev
,
J.
Squire
, and
A.
Bhattacharjee
, “
On large-scale dynamos with stable stratification and the application to stellar radiative zones
,”
Mon. Not. R. Astron. Soc.
517
,
526
542
(
2022
).
13.
M.
Stix
,
The Sun: An Introduction
(
Springer Science & Business Media
,
2004
).
14.
H. K.
Moffatt
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
1978
).
15.
R.
Monchaux
,
M.
Berhanu
,
M.
Bourgoin
,
M.
Moulin
,
P.
Odier
,
J.-F.
Pinton
,
R.
Volk
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
C.
Gasquet
,
L.
Marié
, and
F.
Ravelet
, “
Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium
,”
Phys. Rev. Lett.
98
,
044502
(
2007
).
16.
P. J.
Käpylä
,
M. J.
Korpi
, and
A.
Brandenburg
, “
Large-scale dynamos in turbulent convection with shear
,”
A&A
491
,
353
362
(
2008
).
17.
D. W.
Hughes
and
M. R. E.
Proctor
, “
Large-scale dynamo action driven by velocity shear and rotating convection
,”
Phys. Rev. Lett.
102
,
044501
(
2009
).
18.
P. J.
Käpylä
,
M. J.
Korpi
, and
A.
Brandenburg
, “
The α effect in rotating convection with sinusoidal shear
,”
Mon. Not. R. Astron. Soc.
402
,
1458
1466
(
2010
).
19.
D. W.
Hughes
and
M. R. E.
Proctor
, “
The effect of velocity shear on dynamo action due to rotating convection
,”
J. Fluid Mech.
717
,
395
416
(
2013
).
20.
F.
Cattaneo
and
D. W.
Hughes
, “
Dynamo action in a rotating convective layer
,”
J. Fluid Mech.
553
,
401
418
(
2006
).
21.
S.
Sridhar
and
K.
Subramanian
, “
Shear dynamo problem: Quasilinear kinematic theory
,”
Phys. Rev. E
79
,
045305
(
2009
).
22.
S.
Sridhar
and
K.
Subramanian
, “
Nonperturbative quasilinear approach to the shear dynamo problem
,”
Phys. Rev. E
80
,
066315
(
2009
).
23.
S.
Sridhar
and
N. K.
Singh
, “
The shear dynamo problem for small magnetic Reynolds numbers
,”
J. Fluid Mech.
664
,
265
285
(
2010
).
24.
S.
Sridhar
and
N. K.
Singh
, “
Large-scale dynamo action due to α fluctuations in a linear shear flow
,”
Mon. Not. R. Astron. Soc.
445
,
3770
3787
(
2014
).
25.
N. K.
Singh
and
S.
Sridhar
, “
Transport coefficients for the shear dynamo problem at small Reynolds numbers
,”
Phys. Rev. E
83
,
056309
(
2011
).
26.
A.
Brandenburg
,
K.-H.
Rädler
,
M.
Rheinhardt
, and
P. J.
Käpylä
, “
Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence
,”
Astrophys. J.
676
,
740
(
2008
).
27.
T. A.
Yousef
,
T.
Heinemann
,
A. A.
Schekochihin
,
N.
Kleeorin
,
I.
Rogachevskii
,
A. B.
Iskakov
,
S. C.
Cowley
, and
J. C.
McWilliams
, “
Generation of magnetic field by combined action of turbulence and shear
,”
Phys. Rev. Lett.
100
,
184501
(
2008
).
28.
T. A.
Yousef
,
T.
Heinemann
,
F.
Rincon
,
A. A.
Schekochihin
,
N.
Kleeorin
,
I.
Rogachevskii
,
S. C.
Cowley
, and
J. C.
McWilliams
, “
Numerical experiments on dynamo action in sheared and rotating turbulence
,”
Astron. Nachr.
329
,
737
749
(
2008
).
29.
M. R. E.
Proctor
, “
Bounds for growth rates for dynamos with shear
,”
J. Fluid Mech.
697
,
504
510
(
2012
).
30.
P. J.
Käpylä
and
A.
Brandenburg
, “
Turbulent dynamos with shear and fractional helicity
,”
Astrophys. J.
699
,
1059
(
2009
).
31.
J.
Squire
and
A.
Bhattacharjee
, “
Generation of large-scale magnetic fields by small-scale dynamo in shear flows
,”
Phys. Rev. Lett.
115
,
175003
(
2015
).
32.
J.
Squire
and
A.
Bhattacharjee
, “
Coherent nonhelical shear dynamos driven by magnetic fluctuations at low Reynolds numbers
,”
Astrophys. J.
813
,
52
(
2015
).
33.
I.
Rogachevskii
and
N.
Kleeorin
, “
Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear
,”
Phys. Rev. E
68
,
036301
(
2003
).
34.
I.
Rogachevskii
and
N.
Kleeorin
, “
Nonlinear theory of a “shear-current” effect and mean-field magnetic dynamos
,”
Phys. Rev. E
70
,
046310
(
2004
).
35.
S. M.
Tobias
and
F.
Cattaneo
, “
Shear-driven dynamo waves at high magnetic Reynolds number
,”
Nature
497
,
463
465
(
2013
).
36.
F.
Cattaneo
and
S. M.
Tobias
, “
On large-scale dynamo action at high magnetic Reynolds number
,”
Astrophys. J.
789
,
70
(
2014
).
37.
G.
Nigro
,
P.
Pongkitiwanichakul
,
F.
Cattaneo
, and
S. M.
Tobias
, “
What is a large-scale dynamo?
,”
Mon. Not. R. Astron. Soc.: Lett.
464
,
L119
L123
(
2016
).
38.
D. J.
Galloway
and
M. R.
Proctor
, “
Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion
,”
Nature
356
,
691
693
(
1992
).
39.
P.
Pongkitiwanichakul
,
G.
Nigro
,
F.
Cattaneo
, and
S. M.
Tobias
, “
Shear-driven dynamo waves in the fully nonlinear regime
,”
Astrophys. J.
825
,
23
(
2016
).
40.
R. J.
Teed
and
M. R. E.
Proctor
, “
Destruction of large-scale magnetic field in non-linear simulations of the shear dynamo
,”
Mon. Not. R. Astron. Soc.
458
,
2885
2889
(
2016
).
41.
R. J.
Teed
and
M. R. E.
Proctor
, “
Quasi-cyclic behaviour in non-linear simulations of the shear dynamo
,”
Mon. Not. R. Astron. Soc.
467
,
4858
4864
(
2017
).
42.
N. K.
Singh
,
I.
Rogachevskii
, and
A.
Brandenburg
, “
Enhancement of small-scale turbulent dynamo by large-scale shear
,”
Astrophys. J. Lett.
850
,
L8
(
2017
).
43.
Z.
Yoshida
and
P. J.
Morrison
, “
Epi-two-dimensional fluid flow: A new topological paradigm for dimensionality
,”
Phys. Rev. Lett.
119
,
244501
(
2017
).
44.
S.
Biswas
and
R.
Ganesh
, “
Revisiting kinematic fast dynamo in three-dimensional magnetohydrodynamicplasmas: Dynamo transition from non-helical to helical flows
,”
Phys. Scr.
98
,
075607
(
2023
).
45.
I. V.
Kolokolov
,
V. V.
Lebedev
, and
G. A.
Sizov
, “
Magnetic field correlations in random flow with strong steady shear
,”
J. Exp. Theor. Phys.
113
,
339
351
(
2011
).
46.
S.
Biswas
,
R.
Ganesh
,
R.
Mukherjee
,
A. M.
Singh
,
N.
Vydyanathan
,
B. K.
Sharma
, and
D.
Aggarwal
, see https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41199/ for “
GPU technology conference 2022
(
2022
).
47.
R.
Mukherjee
, “
Turbulence, flows and magnetic field generation in plasmas using a magnetohydrodynamic model
,” Ph.D. thesis (
HBNI
,
2019
).
48.
G. S.
Patterson
and
S. A.
Orszag
, “
Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions
,”
Phys. Fluids
14
,
2538
2541
(
1971
).
49.
A.
Gholami
,
J.
Hill
,
D.
Malhotra
, and
G.
Biros
, “
AccFFT: A library for distributed-memory FFT on CPU and GPU architectures
,” arXiv:1506.07933 (
2016
).
50.
Paulo-herrera
, see https://github.com/paulo-herrera/PyEVTK for “
PyEVTK
(
2021
).”
51.
LLNL
, see https://wci.llnl.gov/simulation/computer-codes/visit for “
VisIt
(
2020
).”
52.
Kitware
, see https://www.paraview.org/ for “
Paraview
(
2022
).”
53.
D.
Galloway
and
U.
Frisch
, “
Dynamo action in a family of flows with chaotic streamlines
,”
Geophys. Astrophys. Fluid Dyn.
36
,
53
83
(
1986
).
54.
S. B. F.
Dorch
, “
On the structure of the magnetic field in a kinematic ABC flow dynamo
,”
Phys. Scr.
61
,
717
722
(
2000
).
55.
V.
Archontis
,
S. B. F.
Dorch
, and
Å.
Nordlund
, “
Numerical simulations of kinematic dynamo action
,”
A&A
397
,
393
399
(
2003
).
56.
I.
Bouya
and
E.
Dormy
, “
Revisiting the ABC flow dynamo
,”
Phys. Fluids
25
,
037103
(
2013
).
57.
P. G.
Drazin
, “
Discontinuous velocity profiles for the Orr-Sommerfeld equation
,”
J. Fluid Mech.
10
,
571
583
(
1961
).
58.
A.
Thess
,
J.
Sommeria
, and
B.
Jüttner
, “
Inertial organization of a two–dimensional turbulent vortex street
,”
Phys. Fluids
6
,
2417
2429
(
1994
).
59.
S.
Biswas
and
R.
Ganesh
, “
Long time fate of two-dimensional incompressible high Reynolds number Navier–Stokes turbulence: A quantitative comparison between theory and simulation
,”
Phys. Fluids
34
,
065101
(
2022
).
60.
A.
Brandenburg
,
A.
Bigazzi
, and
K.
Subramanian
, “
The helicity constraint in turbulent dynamos with shear
,”
Mon. Not. R. Astron. Soc.
325
,
685
692
(
2001
).
61.
N.
Leprovost
and
E-j
Kim
, “
Dynamo efficiency with shear in helical turbulence
,”
Astrophys. J.
696
,
L125
(
2009
).
62.
A.
Courvoisier
and
E-j
Kim
, “
Kinematic α effect in the presence of a large-scale motion
,”
Phys. Rev. E
80
,
046308
(
2009
).
63.
Y. B.
Zeldovich
, “
The magnetic field in the two-dimensional motion of a conducting turbulent fluid
,”
Sov. Phys. JETP
4
,
460
462
(
1957
).
64.
L. K.
Currie
and
S. M.
Tobias
, “
Convection-driven kinematic dynamos with a self-consistent shear flow
,”
Geophys. Astrophys. Fluid Dyn.
113
,
131
148
(
2019
).
65.
S. A.
Balbus
and
J. F.
Hawley
, “
Instability, turbulence, and enhanced transport in accretion disks
,”
Rev. Mod. Phys.
70
,
1
53
(
1998
).
66.
J.-F.
Donati
,
F.
Paletou
,
J.
Bouvier
, and
J.
Ferreira
, “
Direct detection of a magnetic field in the innermost regions of an accretion disk
,”
Nature
438
,
466
469
(
2005
).

Supplementary Material

You do not currently have access to this content.