When the hypersonic vehicle is flying, the plasma in the area near the stagnation point of the front end of the vehicle can be approximately seen as the fully ionized dusty plasma. Due to the existence of dust particles, dusty plasma affects the communication quality of the hypersonic vehicle. In this paper, the general Boltzmann equation applicable to dusty plasmas containing electrons and the Fokker–Planck–Landau collision model are combined to derive a general formula for the electron distribution function of fully ionized dusty plasmas. Considering the contribution of the collision effect and charging effect to the dispersion relationship of fully ionized dusty plasma, the dielectric constant of fully ionized dusty plasma under an external magnetic field is solved. The Wentzel–Kramers–Brillouin method is used to calculate the attenuation coefficient ( α) of the THz wave in fully ionized dusty plasma, and the influence of the external magnetic field strength and other dusty plasma parameters on the attenuation characteristics of the THz circularly polarized wave is analyzed. The research results show that the α of the THz left-hand circularly polarized wave decreases with the increase in the external magnetic field strength, while the α of the THz right-hand circularly polarized wave increases. In addition, increasing the dust particle radius, dust particle density, and electron density in a certain frequency range can increase the α of the THz circularly polarized waves. These research results provide theoretical guidance for the exploration of the interaction mechanism between the THz waves and fully ionized dusty plasma.

1.
F.
Verheest
,
Waves in Dusty Space Plasmas
(
Springer Science & Business Media
2000
), Vol.
245
.
2.
G. S.
Chae
,
W. A.
Scales
,
G.
Ganguli
,
P. A.
Bernhardt
, and
M.
Lampe
,
IEEE Trans. Plasma Sci.
28
,
1694
1705
(
2000
).
3.
K. R.
Segwal
and
S. C.
Sharma
,
IEEE Trans. Plasma Sci.
47
,
3087
3099
(
2019
).
4.
Y. J.
Kim
and
K. Y.
Jung
,
IEEE Trans. Antennas Propag.
69
,
6600
6606
(
2021
).
5.
Y. H.
Hong
,
C. X.
Yuan
,
J. X.
Jia
,
R. L.
Gao
,
Y.
Wang
,
Z. X.
Zhou
,
X. O.
Wang
,
H.
Li
, and
J.
Wu
,
Plasma Sci. Technol.
19
,
055301
(
2017
).
6.
Z. Y.
Wang
,
L. X.
Guo
,
L.
Dan
, and
J. T.
Li
,
IEEE Trans. Plasma Sci.
47
,
3978
3985
(
2019
).
7.
V. V.
Prudskikh
and
Y. A.
Shchekinov
,
Phys. Plasmas
20
,
102106
(
2013
).
8.
M. Y.
Wang
,
H. L.
Li
,
Y. L.
Dong
,
G. P.
Li
,
B. J.
Jiang
,
Q.
Zhang
, and
J.
Xu
,
IEEE Trans. Antennas Propag.
64
,
286
290
(
2016
).
9.
M. Y.
Wang
,
M.
Zhang
,
G. P.
Li
,
B. J.
Jiang
,
X. C.
Zhang
, and
J.
Xu
,
Plasma Sci. Technol.
18
,
798
803
(
2016
).
10.
J. S.
Jia
,
C. X.
Yuan
,
S.
Liu
,
F.
Yue
,
R.
Gao
,
Y.
Wang
,
Z. X.
Zhou
,
J.
Wu
, and
H.
Li
,
Phys. Plasmas
23
,
043302
(
2016
).
11.
J. S.
Jia
,
C. X.
Yuan
,
R.
Gao
,
Y.
Wang
,
Y.
Liu
,
J.
Gao
,
Z.
Zhou
,
X.
Sun
,
J.
Wu
,
H.
Li
, and
S.
Pu
,
J. Phys. D
48
,
465201
(
2015
).
12.
L.
Dan
,
L. X.
Guo
, and
J. T.
Li
,
Phys. Plasmas
25
,
013707
(
2018
).
13.
L.
Dan
,
L. X.
Guo
,
J. T.
Li
,
W.
Chen
,
X.
Yan
, and
Q. Q.
Huang
,
Phys. Plasmas
24
,
093703
(
2017
).
14.
A.
Fasoli
,
F.
Skiff
, and
M. Q.
Tran
,
Phys. Plasmas
1
,
1452
1460
(
1994
).
15.
L. X.
Guo
and
L. J.
Guo
,
Phys. Plasmas
24
,
112119
(
2017
).
16.
S. H.
Liu
,
C. K.
Zhu
,
L. X.
Guo
,
J. T.
Li
,
L.
Dan
, and
Z. Y.
Wang
,
Phys. Plasmas
27
,
023701
(
2020
).
17.
A.
Bendib
,
K.
Bendib
, and
A.
Sid
,
Phys. Rev. E
55
,
7522
(
1997
).
18.
A.
Bendib
,
K.
Bendib-Kalache
,
B.
Cros
, and
G.
Maynard
,
Phys. Rev. E
93
,
043208
(
2016
).
19.
P. K.
Shukla
and
A.
Mamun
,
Introduction to Dusty Plasma Physics
(
CRC Press
,
2001
).
20.
V. E.
Fortov
and
G. E.
Morfill
,
Complex and Dusty Plasmas
(
CRC Press
,
2009
).
21.
H.
Li
,
J.
Wu
,
Z.
Zhou
, and
C.
Yuan
,
Phys. Plasmas
23
,
073702
(
2016
).
22.
J. Z.
Duan
,
C. L.
Wang
,
J. R.
Zhang
,
S. Q.
Ma
,
X. R.
Hong
,
J. A.
Sun
,
W. S.
Duan
, and
L.
Yang
,
Phys. Plasmas
19
,
083703
(
2012
).
23.
I.
Motie
and
M.
Bokaeeyan
,
Phys. Plasmas
22
,
023707
(
2015
).
24.
R.
Tegeback
and
L.
Stenflo
,
Plasma Phys.
17
,
991
993
(
1975
).
25.
Y.
Chen
,
H.
Wang
, and
D.
Zhao
,
IEEE Trans. Plasma Sci.
48
,
275
279
(
2020
).
26.
W.
Chen
,
Z. Y.
Wang
,
L. X.
Yang
,
Z. X.
Huang
,
L. X.
Guo
, and
L. F.
Wang
,
IEEE Trans. Plasma Sci.
49
,
1460
1467
(
2021
).
27.
L.
Yutong
,
C.
Wei
,
Y.
Lixia
,
H.
Zhixiang
,
G.
Lixin
,
G.
Linjing
, and
D.
Qingqing
,
Phys. Plasmas
27
,
093702
(
2020
).
28.
G. P.
Ginet
and
J. M.
Albert
,
Phys. Fluids B
3
,
2994
3012
(
1991
).
29.
W.
Chen
,
L. X.
Yang
,
Z. X.
Huang
, and
L. X.
Guo
,
IEEE Trans. Plasma Sci.
37
,
2359
2358
(
2019
).
You do not currently have access to this content.