Achieving large-scale kinetic modeling is a crucial task for the development and optimization of modern plasma devices. With the trend of decreasing pressure in applications, such as plasma etching, kinetic simulations are necessary to self-consistently capture the particle dynamics. The standard, explicit, electrostatic, momentum-conserving particle-in-cell method suffers from restrictive stability constraints on spatial cell size and temporal time step, requiring resolution of the electron Debye length and electron plasma period, respectively. This results in a very high computational cost, making the technique prohibitive for large volume device modeling. We investigate the direct implicit algorithm and the explicit energy conserving algorithm as alternatives to the standard approach, both of which can reduce computational cost with a minimal (or controllable) impact on results. These algorithms are implemented into the well-tested EDIPIC-2D and LTP-PIC codes, and their performance is evaluated via 2D capacitively coupled plasma discharge simulations. The investigation reveals that both approaches enable the utilization of cell sizes larger than the Debye length, resulting in a reduced runtime, while incurring only minor inaccuracies in plasma parameters. The direct implicit method also allows for time steps larger than the electron plasma period; however, care must be taken to avoid numerical heating or cooling. It is demonstrated that by appropriately adjusting the ratio of cell size to time step, it is possible to mitigate this effect to an acceptable level.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
2005
), Chap. 3.
2.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
3.
W.
Ouyang
,
C.
Ding
,
Q.
Liu
,
S.
Gao
,
W.
Deng
, and
Z.
Wu
,
AIP Adv.
11
,
075121
(
2021
).
4.
E.
Kawamura
,
A. J.
Lichtenberg
,
M. A.
Lieberman
, and
A. M.
Marakhtanov
,
Plasma Sources Sci. Technol.
25
,
035007
(
2016
).
5.
Y.
Yang
and
M. J.
Kushner
,
Plasma Sources Sci. Technol.
19
,
055011
(
2010
).
6.
S.
Rauf
,
K.
Bera
, and
K.
Collins
,
Plasma Sources Sci. Technol.
17
,
035003
(
2008
).
7.
A.
Agarwal
,
S.
Rauf
, and
K.
Collins
,
Plasma Sources Sci. Technol.
21
,
055012
(
2012
).
8.
E.
Kawamura
,
M. A.
Lieberman
, and
D. B.
Graves
,
Plasma Sources Sci. Technol.
23
,
064003
(
2014
).
9.
Y.-R.
Zhang
,
X.
Xu
, and
Y.-N.
Wang
,
Phys. Plasmas
17
,
033507
(
2010
).
10.
N.
Gao
,
Y.-B.
Xi
,
J.-J.
Li
, and
Y.
Liu
,
Vacuum
192
,
110466
(
2021
).
11.
A. M.
Velasco
,
J. D.
Muñoz
, and
M.
Mendoza
,
J. Comput. Phys.
376
,
76
(
2019
).
12.
H. C.
Kim
,
F.
Iza
,
S. S.
Yang
,
M.
Radmilovic-Radjenovi
, and
J. K.
Lee
,
J. Phys. D: Appl. Phys.
38
,
R283
(
2005
).
13.
J.
van Dijk
,
G. M. W.
Kroesen
, and
A.
Bogaerts
,
J. Phys. D: Appl. Phys.
42
,
190301
(
2009
).
14.
Y.
Zhang
,
M. J.
Kushner
,
S.
Sriraman
,
A.
Marakhtanov
,
J.
Holland
, and
A.
Paterson
,
J. Vac. Sci. Technol.
33
,
031302
(
2015
).
15.
H.
Sun
,
Y.
Yang
,
Q.
Lu
,
S.
Lu
,
M.
Wan
, and
R.
Wang
,
Astrophy. J.
926
,
97
(
2022
).
16.
S. G.
Walton
,
D. R.
Boris
,
S. C.
Hernandez
,
E. H.
Lock
,
T. B.
Petrova
,
G. M.
Petrov
, and
R. F.
Fernsler
,
ECS J. Solid State Sci. Technol.
4
(
6
),
N5033
N5040
(
2015
).
17.
S.
Muhl
and
A.
Pérez
,
Thin Solid Films
579
,
174
198
(
2015
).
18.
I.
Adamovich
,
S. D.
Baalrud
,
A.
Bogaerts
,
P. J.
Bruggeman
,
M.
Cappelli
et al,
J. Phys. D: Appl. Phys.
50
,
323001
(
2017
).
19.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Adam Hilger
,
New York
,
1988
).
20.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
New York
,
1985
).
21.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
Oxford
,
1994
).
22.
D.
Vender
and
R. W.
Boswell
,
IEEE Trans. Plasma Sci.
18
,
725
(
1990
).
23.
M.
Yan
and
W. J.
Goedheer
,
Plasma Sources Sci. Technol.
8
,
349
(
1999
).
24.
H. M.
Sun
and
J.
Sun
,
J. Geophys. Res.
125
,
e2019JA027376
, https://doi.org/10.1029/2019JA027376 (
2019
).
25.
I. V.
Sokolov
,
H.
Sun
,
G.
Toth
,
Z.
Huang
,
V.
Tenishev
,
L.
Zhao
,
J.
Kota
,
O.
Cohen
, and
T.
Gombosi
,
J. Comput. Phys.
476
,
111923
(
2023
).
26.
H.
Sun
,
J.
Chen
,
I. D.
Kaganovich
,
A.
Khrabrov
, and
D.
Sydorenko
,
Phys. Rev. Lett.
129
,
125001
(
2022
).
27.
H.
Sun
,
J.
Chen
,
I. D.
Kaganovich
,
A.
Khrabrov
, and
D.
Sydorenko
,
Phys. Rev. E
106
,
035203
(
2022
).
28.
S.
Lu
,
V.
Angelopoulos
,
P. L.
Pritchett
,
J.
Nan
,
K.
Huang
,
X.
Tao
,
A. V.
Artemyev
,
A.
Runov
,
Y.
Jia
,
H.
Sun
, and
N.
Kang
,
J. Geophys. Res.
126
,
e2021JA2020
, https://doi.org/10.1029/2021JA029550 (
2021
).
29.
S.
Lu
,
Q.
Lu
,
R.
Wang
,
X.
Li
,
X.
Gao
,
K.
Huang
,
H.
Sun
,
Y.
Yang
,
A. V.
Artemyev
,
X.
An
, and
Y.
Jia
,
Astrophy. J.
943
,
100
(
2023
).
30.
Y.-X.
Liu
,
Q.-Z.
Zhang
,
W.
Jiang
,
L.-J.
Hou
,
X.-Z.
Jiang
,
W.-Q.
Lu
, and
Y.-N.
Wang
,
Phys. Rev. Lett.
107
,
055002
(
2011
).
31.
E.
Kawamura
,
M. A.
Lieberman
, and
A. J.
Lichtenberg
,
Phys. Plasmas
13
,
053506
(
2006
).
32.
S.
Sharma
,
S.
Patil
,
S.
Sengupta
,
A.
Sen
,
A.
Khrabrov
, and
A. I.
Kaganovich
,
Phys. Plasmas
29
,
063501
(
2022
).
33.
S.
Patil
,
S.
Sharma
,
S.
Sengupta
,
A.
Sen
, and
I.
Kaganovich
,
Phys. Rev. Res.
4
,
013059
(
2022
).
34.
S.
Zhang
,
G.-Y.
Sun
,
J.
Chen
,
H.
Sun
,
A.-B.
Sun
, and
G.-J.
Zhang
,
Appl. Phys. Lett.
121
,
014101
(
2022
).
35.
L.
Xu
,
L.
Chen
,
M.
Funk
,
A.
Ranjan
,
M.
Hummel
,
R.
Bravenec
,
R.
Sundararajan
,
D. J.
Economou
, and
V. M.
Donnelly
,
Appl. Phys. Lett.
93
,
261502
(
2008
).
36.
U.
Buddemeier
,
U.
Kortshagen
, and
I.
Pukropski
,
Appl. Phys. Lett.
67
,
191
(
1995
).
37.
V. A.
Godyak
,
Sov. J. Plasma Phys.
2
,
78
(
1976
).
38.
O. A.
Popov
and
V. A.
Godyak
,
J. Appl. Phys
57
,
53
(
1985
).
39.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
40.
I. D.
Kaganovich
,
Phys. Rev. Lett.
89
,
265006
(
2002
).
41.
I. D.
Kaganovich
,
O. V.
Polomarov
, and
C. E.
Theodosiou
,
IEEE Trans. Plasma Sci.
34
,
696
(
2006
).
42.
S.
Sharma
and
M. M.
Turner
,
Phys. Plasmas
20
(
7
),
073507
(
2013
).
43.
S.
Sharma
and
M. M.
Turner
,
Plasma Sources Sci. Technol.
22
,
035014
(
2013
).
44.
S.
Sharma
,
S. K.
Mishra
, and
P. K.
Kaw
,
Phys. Plasmas
21
,
073511
(
2014
).
45.
G.
Sun
,
H.
Li
,
A.
Sun
,
Y.
Li
,
B.
Song
,
H.
Mu
,
X.
Li
, and
G. J.
Zhang
,
Plasma Process. Polym.
16
(
93
),
1900093
(
2019
).
46.
G.
Sun
,
S.
Zhang
,
A.
Sun
, and
G.
ZHANG
,
Plasma Sci. Technol.
24
,
095401
(
2022
).
47.
H. H.
Goto
,
H. D.
Lowe
, and
T.
Ohmi
,
IEEE Trans. Semicond. Manuf.
6
,
58
(
1993
).
48.
J.
Robiche
,
P. C.
Boyle
,
M. M.
Turner
, and
A. R.
Ellingboe
,
J. Phys. D: Appl. Phys.
36
,
1810
(
2003
).
49.
H. C.
Kim
,
J. K.
Lee
, and
J. W.
Shon
,
Phys. Plasmas
10
,
4545
(
2003
).
50.
M. M.
Turner
and
P.
Chabert
,
Phys. Rev. Lett.
96
,
205001
(
2006
).
51.
S.
Sharma
and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
46
,
285203
(
2013
).
52.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
37
,
697
(
2004
).
53.
S.
Sharma
and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
47
(
28
),
285201
(
2014
).
54.
P. D. t S.
Sharma
,
Investigation of Ion and Electron Kinetic Phenomena in Capacitively Coupled Radio-Frequency Plasma Sheaths: A Simulation Study
(
Dublin City University
,
2013
).
55.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
56.
U.
Czarnetzki
,
J.
Schulze
,
E.
Schungel
, and
Z.
Donko
,
Plasma Sources Sci. Technol.
20
,
024010
(
2011
).
57.
B.
Bruneau
,
T.
Novikova
,
T.
Lafleur
,
J. P.
Booth
, and
E. V.
Johnson
,
Plasma Sources Sci. Technol.
23
,
065010
(
2014
).
58.
B.
Bruneau
,
T.
Gans
,
D.
O'Connell
,
A.
Greb
,
E.
Johnson
, and
J.-P.
Booth
,
Phys. Rev. Lett.
114
,
125002
(
2015
).
59.
E.
Schungel
,
I.
Korolov
,
B.
Bruneau
,
A.
Derzsi
,
E.
Johnson
,
D.
O'Connell
,
T.
Gans
,
J. P.
Booth
,
Z.
Donko
, and
J.
Schulze
,
J. Phys. D: Appl. Phys.
49
,
265203
(
2016
).
60.
X. V.
Qin
,
Y. H.
Ting
, and
A. E.
Wendt
,
Plasma Sources Sci. Technol.
19
,
065014
(
2010
).
61.
H.
Shin
,
W.
Zhu
,
L.
Xu
,
V. M.
Donnelly
, and
D. J.
Economou
,
Plasma Sources Sci. Technol.
20
,
055001
(
2011
).
62.
D. J.
Economou
,
J. Vac. Sci. Technol. A
31
,
050823
(
2013
).
63.
T.
Lafleur
,
Plasma Sources Sci. Technol.
25
,
013001
(
2016
).
64.
S.
Sharma
,
S. K.
Mishra
,
P. K.
Kaw
,
A.
Das
,
N.
Sirse
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
24
,
025037
(
2015
).
65.
S.
Sharma
,
S. K.
Mishra
,
P. K.
Kaw
, and
M. M.
Turner
,
Phys. Plasmas
24
(
1
),
013509
(
2017
).
66.
S.
Sharma
,
N.
Sirse
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
29
(
11
),
114001
(
2020
).
67.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
, and
M. M.
Turner
,
Phys. Plasmas
28
(
10
),
103502
(
2021
).
68.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
55
(
27
),
275202
(
2022
).
69.
S.
Sharma
,
N.
Sirse
,
P. K.
Kaw
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
23
,
110701
(
2016
).
70.
R.
Shahid
,
B.
Kallol
, and
C.
Ken
,
Plasma Sources Sci. Technol.
19
,
015014
(
2010
).
71.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
E.
Schuengel
,
R. P.
Brinkmann
,
A.
Derzsi
,
I.
Korolov
,
Z.
Donko
, and
T.
Mussenbrock
,
Plasma Sources Sci. Technol.
24
,
024002
(
2015
).
72.
P. A.
Miller
,
E. V.
Barnat
,
G. A.
Hebner
,
P. A.
Paterson
, and
J. P.
Holland
,
Plasma Sources Sci. Technol.
15
,
889
899
(
2006
).
73.
R. R.
Upadhyay
,
I.
Sawada
,
P. L. G.
Ventzek
, and
L. L.
Raja
,
J. Phys. D: Appl. Phys.
46
,
472001
(
2013
).
74.
S.
Sharma
,
A.
Sen
,
N.
Sirse
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
25
,
080705
(
2018
).
75.
S.
Sharma
,
N.
Sirse
,
A.
Sen
,
J. S.
Wu
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
52
,
365201
(
2019
).
76.
S.
Sharma
,
N.
Sirse
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
25
,
063501
(
2018
).
77.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
Z.
Donko
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
Plasma Sources Sci. Technol.
27
,
125010
(
2018
).
78.
S.
Sharma
,
N.
Sirse
,
A.
Sen
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
26
,
103508
(
2019
).
79.
S.
Sharma
,
N.
Sirse
,
A.
Kuley
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
29
,
045003
(
2020
).
80.
C. K.
Birdsall
,
IEEE Trans. Plasma Sci.
19
(
2
),
65
(
1991
).
81.
S.
Zhang
,
G.-Y.
Sun
,
A.
Volcokas
,
G.-J.
Zhang
, and
A.-B.
Sun
,
Plasma Sources Sci. Technol.
30
,
055007
(
2021
).
82.
J. U.
Brackbill
and
D. W.
Forslund
,
J. Comput. Phys.
46
,
271
308
(
1982
).
83.
B. I.
Cohen
,
A. B.
Langdon
, and
A.
Friedman
,
J. Comput. Phys.
46
,
15
38
(
1982
).
84.
B. I.
Cohen
,
A. B.
Langdon
, and
D. W.
Hewett
,
J. Comput. Phys.
81
,
151
168
(
1989
).
85.
M. R.
Gibbons
and
D. W.
Hewett
,
J. Comput. Phys.
120
,
231
(
1995
).
86.
H. R.
Lewis
,
J. Comput. Phys.
6
(
1
),
136
141
(
1970
).
87.
V.
Vahedi
,
G.
DiPeso
,
C. K.
Birdsall
,
M. A.
Lieberman
, and
T. D.
Rognlien
,
Plasma Sources Sci. Technol.
2
,
261
(
1993
).
88.
E.
Kawamura
,
C. K.
Birdsall
, and
V.
Vahedi
,
Plasma Sources Sci. Technol.
9
,
413
(
2000
).
89.
A.
Friedman
,
S. E.
Parker
,
S. L.
Ray
, and
C. K.
Birdsall
,
J. Comput. Phys.
96
,
54
(
1991
).
90.
S.
Mattei
,
K.
Nishida
,
M.
Onai
,
J.
Lettry
,
M. Q.
Tran
, and
A.
Hatayama
,
J. Comput. Phys.
350
,
891
906
(
2017
).
91.
J. R.
Angus
,
A.
Link
,
A.
Friedman
,
D.
Ghosh
, and
J. D.
Johnson
,
J. Comput. Phys.
456
,
111030
(
2022
).
92.
See https://github.com/PrincetonUniversity/EDIPIC-2D for the source code of the explicit version of EDIPIC-2D.
93.
A. T.
Powis
,
W.
Villafana
, and
I. D.
Kaganovich
, in
International Electric Propulsion Conference
(
MIT
,
Cambridge, MA
,
2022
).
94.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
(
1995
).
95.
V.
Vahedi
and
G.
DiPeso
,
J. Comput. Phys.
131
,
149
163
(
1997
).
96.
A. B.
Langdon
,
B. I.
Cohen
, and
A.
Friedman
,
J. Comput. Phys.
51
(
1
),
107
138
(
1983
).
97.
D. C.
Barnes
and
L.
Chacón
,
Comput. Phys. Commun.
258
,
107560
(
2021
).
98.
H.
Zhang
,
E. M.
Constantinescu
, and
B. F.
Smith
,
SIAM J. Sci. Comput.
44
(
1
),
C1
C24
(
2022
).
99.
J.
Squire
,
H.
Qin
, and
W. M.
Tang
,
Phys. Plasmas
19
(
8
),
084501
(
2012
).
100.
J.
Xiao
,
Q.
Hong
, and
L.
Jian
,
Plasma Sci. Technol.
20
(
11
),
110501
(
2018
).
101.
A. S.
Glasser
and
H.
Qin
,
J. Plasma Phys.
86
(
3
),
835860303
(
2020
).
102.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
CRC Press
,
2004
).
103.
M.
Hayashi
,
Technical report NIFS-DATA-72
(
2003
).
104.
S.
Pancheshnyi
,
S.
Biagi
,
M. C.
Bordage
,
G. J. M.
Hagelaar
,
W. L.
Morgan
,
A. V.
Phelps
, and
L. C.
Pitchford
,
Chem. Phys.
398
,
148
153
(
2012
).
105.
S. A.
Maiorov
,
Plasma Phys. Rep.
35
,
802
812
(
2009
).
106.
B. G.
Heil
,
IEEE Trans. Plasma Sci.
36
(
4
),
1404
1405
(
2008
).
107.
D.
Eremin
,
J. Comput. Phys.
452
,
110934
(
2022
).
108.
M. M.
Turner
,
Phys. Plasmas
13
,
033506
(
2006
).
109.
S. V.
Berezhnoi
,
I. D.
Kaganovich
, and
L. D.
Tsendin
,
Plasma Phys. Rep.
24
,
556
563
(
1998
).
110.
S. V.
Berezhnoi
,
I. D.
Kaganovich
, and
L. D.
Tsendin
,
Plasma Sources Sci. Technol.
7
,
268
281
(
1998
).
111.
R. D.
Falgout
and
U. M.
Yang
, in
Computational Science—ICCS 2002: International Conference Amsterdam
(
Springer
,
Berlin, Heidelberg
,
2002
), pp.
632
641
.
112.
T.
Charoy
,
J. P.
Boeuf
,
A.
Bourdon
,
J. A.
Carlsson
,
P.
Chabert
,
B.
Cuenot
,
D.
Eremin
,
L.
Garrigues
,
K.
Hara
,
I. D.
Kaganovich
,
A. T.
Powis
,
A.
Smolyakov
,
D.
Sydorenko
,
A.
Tavant
,
O.
Vermorel
, and
W.
Villafana
,
Plasma Sources Sci. Technol.
28
(
10
),
105010
(
2019
).
You do not currently have access to this content.