Nonthermal plasmas (NTPs) induced by atmospheric nanosecond multiple-pulse corona discharge have been studied to control pollution generated by combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, the chemical reactions that occur between multiple pulses and the characteristics of the electron density (denoted by ne) and ozone during the second pulse have not been fully clarified. In this study, we perform quasi-two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for a two-temperature nonequilibrium NTP are used as governing equations. A total of 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. We simulate streamer group behavior up to the second pulse and found that ne and the length of streamers change due to chemical reactions between pulses. In addition, we successfully simulated the phenomena of ne reduction and streamer suppression that occur primarily during the second pulse. This is caused by the decrease in potential gradient due to the space and dielectric surface charge build-up. Furthermore, it is confirmed that the ozone formation reaction mainly occurs between pulses. This simulation enables predictions of phenomena in nanosecond positive multiple-pulse plasma systems.

1.
K.
Yoshida
,
T.
Yamamoto
,
T.
Kuroki
, and
M.
Okubo
,
Plasma Chem. Plasma Process.
29
,
373
(
2009
).
2.
T.
Matsumoto
,
D.
Wang
,
T.
Namihira
, and
H.
Akiyama
,
IEEE Trans. Plasma Sci.
38
,
2639
(
2010
).
3.
M.
Okubo
,
Phys. Plasmas
22
,
123515
(
2015
).
4.
H.
Hidaka
,
D.
Ikoma
,
K.
Sasaki
,
T.
Namihira
, and
D.
Wang
, in
Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS)
(
IEEE
,
2019
), pp.
1
4
.
5.
M.
Okubo
,
N.
Arita
,
T.
Kuroki
,
K.
Yoshida
, and
T.
Yamamoto
,
Plasma Chem. Plasma Process.
28
,
173
(
2008
).
6.
H.
Yamasaki
,
A.
Shidara
,
Y.
Shimidzu
,
T.
Kuroki
,
H. J.
Kim
, and
M.
Okubo
,
Int. J. Plasma Environ. Sci. Technol.
14
,
e03007
(
2020
).
7.
F.
Tochikubo
and
H.
Arai
,
Jpn. J. Appl. Phys., Part 1
41
,
844
(
2002
).
8.
J. J.
Shi
and
M. G.
Kong
,
Phys. Rev. Lett.
96
,
105009
(
2006
).
9.
T.
Kuroki
,
S.
Tanaka
,
M.
Okubo
, and
T.
Yamamoto
,
IEEE Trans. Ind. Appl.
43
,
1075
(
2007
).
10.
E. A.
Bogdanov
,
A. A.
Kudryavtsev
,
L. D.
Tsendin
,
R. R.
Arslanbekov
,
V. I.
Kolobov
, and
V. V.
Kudryavtsev
,
Tech. Phys.
48
,
983
(
2003
).
11.
P.
Ségur
and
F.
Massines
, in
Proceedings of the 13th International Conference on Gas Discharges and their Applications
(Local Organizing Committee of GD2000,
2000
), p.
15
.
12.
T.
Sato
,
D.
Ito
, and
H.
Nishiyama
,
IEEE Trans. Ind. Appl.
41
,
900
(
2005
).
13.
M.
Okubo
,
K.
Yoshida
, and
T.
Yamamoto
,
IEEE Trans. Ind. Appl.
44
,
1410
(
2008
).
14.
E. M.
van Veldhuizen
and
W. R.
Rutgers
,
J. Phys. D: Appl. Phys.
35
,
2169
(
2002
).
15.
R.
Ono
and
T.
Oda
,
J. Phys. D: Appl. Phys.
36
,
1952
(
2003
).
16.
R.
Ono
and
T.
Oda
,
J. Appl. Phys.
97
,
013302
(
2005
).
17.
D.
Wang
,
T.
Namihira
, and
H.
Akiyama
,
J. Adv. Oxid. Technol.
14
,
131
(
2011
).
18.
D.
Wang
,
M.
Matsuda
,
T.
Matsumoto
,
T.
Namihira
, and
H.
Akiyama
,
IEEE Trans. Dielectr. Electr. Insul.
18
,
1091
(
2011
).
19.
D.
Wang
,
S.
Okada
,
T.
Matsumoto
,
T.
Namihira
, and
H.
Akiyama
,
IEEE Trans. Plasma Sci.
38
,
2746
(
2010
).
20.
G. J. J.
Winands
,
Z.
Liu
,
A. J. M.
Pemen
,
E. J. M.
van Heesch
,
K.
Yan
, and
E. M.
van Veldhuizen
,
J. Phys. D: Appl. Phys.
39
,
3010
(
2006
).
21.
L.
Zhao
,
Z.
Luo
,
J.
Xuan
,
J.
Jiang
,
X.
Gao
, and
K.
Cen
,
IEEE Trans. Plasma Sci.
40
,
802
(
2012
).
22.
M.
Tanaka
,
Y.
Murooka
, and
K.
Hidaka
,
J. Appl. Phys.
61
(
9
),
4471
(
1987
).
23.
R.
Morrow
and
J. J.
Lowke
,
J. Phys. D: Appl. Phys.
30
,
614
(
1997
).
24.
S. V.
Pancheshnyi
and
A. Y.
Starikovskii
,
J. Phys. D: Appl. Phys.
36
,
2683
(
2003
).
25.
B.
Guo
and
J.
Teunissen
,
Plasma Sources Sci. Technol.
32
,
025001
(
2023
).
26.
H.
Tamura
,
S.
Sato
, and
N.
Ohnishi
,
J. Phys. D: Appl. Phys.
56
,
045202
(
2023
).
27.
L.
Li
and
J.
Wang
,
J. Phys. D: Appl. Phys.
55
,
055203
(
2022
).
28.
H. H.
Kim
,
Y.
Teramoto
,
A.
Ogata
,
W. S.
Kang
,
M.
Hur
, and
Y. H.
Song
,
J. Phys. D: Appl. Phys.
51
,
244006
(
2018
).
29.
W.
Wang
,
H. H.
Kim
,
K. V.
Laer
, and
A.
Bogaerts
,
Chem. Eng. J.
334
,
2467
2479
(
2018
).
30.
W. S.
Kang
,
H. H.
Kim
,
Y.
Teramoto
,
A.
Ogata
,
J. Y.
Lee
,
D. W.
Kim
,
M.
Hur
, and
Y. H.
Song
,
Plasma Sources Sci. Technol.
27
,
015018
(
2018
).
31.
T.
Ono
,
E.
Shimaki
,
Y.
Kojima
,
Y.
Kiyama
,
T.
Tosiyasu
,
K.
Soejima
, and
A.
Danjo
,
J. Phys. Soc. Jpn.
73
,
892
(
2004
).

Supplementary Material

You do not currently have access to this content.