A cross-band frequency hopping high power microwave (HPM) oscillator with permanent magnet package was proposed. The oscillator comprises of an inner Ku-band hollow oscillator and an outer C-band coaxial oscillator. By comparing with other cross-band HPM oscillators, this device is quite compact and high efficiency, for the guiding magnetic field is as low as 0.43 T, which is provided by a 74 kg permanent magnet. Since the cathode can be adjusted telescopically to produce annular electron beams at different radius, different bands HPMs can be generated in the inner and the outer slow wave structure. Verified by particle-in-cell simulation, a HPM with a frequency of 7.8 GHz and a power of 3.1 GW is achieved for C-band, corresponding to a power efficiency of 45%. Respectively, a Ku-band HPM output with a frequency of 14.4 GHz and a power of 1.3 GW were obtained, corresponding to a power efficiency of 45%.

1.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
,
3rd ed
. (
Taylor & Francis
,
New York
,
2016
).
2.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
,
2nd ed
. (
Taylor & Francis
,
New York
,
2007
).
3.
J.
Zhang
,
D.
Zhang
,
Y.
Fan
,
J.
He
,
X.
Ge
,
X.
Zhang
,
J.
Ju
, and
T.
Xun
, “
Progress in narrowband high-power microwave sources
,”
Phys. Plasmas
27
(
1
),
010501
(
2020
).
4.
F.
Zhou
,
D.
Zhang
,
J.
Zhang
,
L.
Song
,
Z.
Jin
,
X.
Ge
, and
J.
He
, “
A novel cross-band frequency hopping gigawatts class high-power microwave oscillator
,”
IEEE Trans. Electron Devices
69
(
12
),
7079
7082
(
2022
).
5.
R.
Xiao
,
Y.
Shi
,
K.
Chen
, and
H.
Wang
, “
Conversion of Cherenkov radiation to transition radiation by electron bunch post-acceleration for extremely efficient beam–wave interaction
,”
IEEE Trans. Electron Devices
69
(
3
),
1409
1415
(
2022
).
6.
L.
Xiaoze
,
S.
Wei
,
T.
Weibing
,
H.
Xianggang
,
S.
Jiancang
,
Z.
Xiaoxin
,
Z.
Ligang
,
T.
Yan
,
L.
Lankai
,
Z.
Hongling
, and
Z.
Xiangjun
, “
Experimental study of a Ku-band RBWO packaged with permanent magnet
,”
IEEE Trans. Electron Devices
66
(
10
),
4408
4412
(
2019
).
7.
M. A.
Ansari
and
M.
Thottappan
, “
Design and simulation of dual-band nonuniform relativistic backward wave oscillator using a Bragg structure as its RF circuit and reflector-cum-mode converter
,”
IEEE Trans. Electron Devices
67
(
4
),
1814
1818
(
2020
).
8.
A. M.
Elfrgani
,
S.
Prasad
,
M. I.
Fuks
, and
E.
Schamiloglu
, “
Dual-band operation of relativistic BWO with linearly polarized gaussian output
,”
IEEE Trans. Plasma Sci.
42
(
8
),
2141
2145
(
2014
).
9.
P.
Wu
,
J.
Fan
,
Y.
Teng
,
Y.
Shi
,
Y.
Deng
, and
J.
Sun
, “
Tunability over three frequency bands induced by mode transition in relativistic backward wave oscillator with strong end reflections
,”
Phys. Plasmas
21
(
10
),
103110
(
2014
).
10.
T.
Wang
,
B.
Qian
,
J.-D.
Zhang
,
X.-P.
Zhang
,
Y. B.
Cao
, and
Q.
Zhang
, “
Preliminary experimental investigation of a dual-band relativistic backward wave oscillator with dual beams
,”
Phys. Plasmas
18
(
1
),
013107
(
2011
).
11.
P.
Zhang
,
X.
Ge
,
F.
Dang
,
C.
Huang
,
C.
Zhao
,
J.
Zhang
, and
J.
Zhang
, “
A high-efficiency dual-band relativistic Cerenkov oscillator based on dual electron beams
,”
Phys. Plasmas
26
(
10
),
103501
(
2019
).
12.
T.
Miao
,
R.
Xiao
,
Y.
Shi
,
K.
Chen
,
Y.
Gui
,
Y.
Zhang
,
K.
Luo
,
C.
Chen
, and
J.
Shi
, “
Experimental demonstration of dual-mode relativistic backward wave oscillator with a beam filtering ring packaged with permanent magnet
,”
IEEE Electron Device Lett.
44
(
4
),
662
665
(
2023
).
13.
R.
Xiao
,
H.
Wang
,
K.
Chen
, and
Y.
Shi
, “
Role of second harmonic in the optimization of microwave conversion efficiency from an intense relativistic electron beam
,”
IEEE Trans. Microwave Theory Tech.
69
(
12
),
5284
5290
(
2021
).
14.
R.
Xiao
,
K.
Chen
,
Y.
Shi
, and
C.
Chen
, “
Toward 80% efficiency in a super klystron-like relativistic backward wave oscillator with second and third harmonic coaxial-premodulation cavity
,”
IEEE Trans. Electron Devices
70
,
2521
2525
(
2023
).
15.
R.
Xiao
,
K.
Chen
,
H.
Wang
,
D.
Wang
,
Y.
Shi
, and
L.
Gao
, “
Theoretical calculation and particle-in-cell simulation of a multi-mode relativistic backward wave oscillator operating at low magnetic field
,”
Phys. Plasmas
29
(
4
),
043103
(
2022
).
16.
R.
Xiao
,
Y.
Shi
,
H.
Wang
,
G.
Zhang
,
Y.
Gui
,
Z.
Song
,
X.
Bai
,
Y.
Zhang
, and
J.
Sun
, “
Efficient generation of multi-gigawatt power by an X-band dual-mode relativistic backward wave oscillator operating at low magnetic field
,”
Phys. Plasmas
27
(
4
),
043102
(
2020
).
17.
D.
Zhang
,
J.
Zhang
,
H.
Zhong
,
Z.
Jin
, and
Y.
Yuan
, “
Power capacity of mixed modes in overmoded slow wave structures
,”
Appl. Phys. Lett.
105
(
4
),
043510
(
2014
).
18.
D.
Zhang
,
J.
Zhang
,
H.
Zhong
, and
Z.
Jin
, “
Analysis of the power capacity of overmoded slow wave structures
,”
Phys. Plasmas
20
(
7
),
073111
(
2013
).
19.
Z.
Bai
,
J.
Zhang
,
H.
Zhong
,
X.
Zhao
, and
F.
Yang
, “
Elimination of the asymmetric modes in a Ka-band super overmoded coaxial Cerenkov oscillator
,”
J. Phys. D
50
(
49
),
495108
(
2017
).
20.
Q.
Zhang
,
C.-W.
Yuan
, and
L.
Liu
, “
A dual-band coaxial waveguide mode converter for high-power microwave applications
,”
Chin. Phys. Lett.
28
(
6
),
068401
(
2011
).
21.
J.
Zhou
,
D.
Liu
,
C.
Liao
, and
Z.
Li
, “
CHIPIC: An efficient code for electromagnetic PIC modeling and simulation
,”
IEEE Trans. Plasma Sci.
37
(
10
),
2002
2011
(
2009
).
You do not currently have access to this content.