Multi-kilojoule, multi-picosecond short-pulse lasers, such as the National Ignition Facility-Advanced Radiographic Capability laser and the OMEGA-Extended Performance laser, which have been constructed over the last two decades, enable exciting opportunities to produce high-brightness, high-energy laser-driven proton sources for applications in high-energy-density science like proton fast ignition for inertial fusion energy, particle radiography, and materials science studies. Results on these platforms have demonstrated enhanced accelerated proton energies and electron temperatures when compared to established scaling laws. Recent work has developed a new scaling for proton TNSA in the multi-ps regime. However, this new physics in the multi-ps regime motivates the need to understand the origin of the enhancement in proton energies. Toward this goal, this work presents the first measurements of the TNSA accelerating sheath field in the multi-ps regime for pulse durations of 0.6, 5, and 10 ps. This measurement was achieved by using a separate TNSA proton source to radiograph the spatiotemporal profile of the accelerating sheath that is responsible for proton acceleration. The use of stacked radiochromic film detectors allows for a discrete time profile of the radiographs, thus enabling the measurement of the temporal and spatial evolution of the accelerating field. In performing this measurement, we extract quantities such as the sheath strength as a function of time and pulse duration, which shows that longer pulse durations sustain a stronger electric field for a longer duration when compared to sub-ps laser pulses, which may enable the observed boosted proton energies and proton conversion efficiencies.

1.
A. J.
Mackinnon
,
P. K.
Patel
,
R. P.
Town
,
M. J.
Edwards
,
T.
Phillips
,
S. C.
Lerner
,
D. W.
Price
,
D.
Hicks
,
M. H.
Key
,
S.
Hatchett
,
S. C.
Wilks
,
M.
Borghesi
,
L.
Romagnani
,
S.
Kar
,
T.
Toncian
,
G.
Pretzler
,
O.
Willi
,
M.
Koenig
,
E.
Martinolli
,
S.
Lepape
,
A.
Benuzzi-Mounaix
,
P.
Audebert
,
J. C.
Gauthier
,
J.
King
,
R.
Snavely
,
R. R.
Freeman
, and
T.
Boehlly
, “
Proton radiography as an electromagnetic field and density perturbation diagnostic (invited)
,”
Rev. Sci. Instrum.
75
,
3531
3536
(
2004
).
2.
J.
Badziak
,
J.
Honrubia
,
S.
Jablonski
, and
J.
Wolowski
, “
Laser-driven proton fast ignition of inertial fusion: Concepts, issues and prospects
,”
AIP Conf. Proc.
993
,
19
26
(
2008
).
3.
M.
Barberio
,
M.
Sciscio
,
S.
Vallieres
,
F.
Cardelli
,
S. N.
Chen
,
G.
Famulari
,
T.
Gangolf
,
G.
Revet
,
A.
Schiavi
,
M.
Senzacqua
, and
P.
Antici
, “
Laser-accelerated particle beams for stress testing of materials
,”
Nat. Commun.
9
,
372
(
2018
).
4.
R. A.
Snavely
,
M. H.
Key
,
S. P.
Hatchett
,
T. E.
Cowan
,
M.
Roth
,
T. W.
Phillips
,
M. A.
Stoyer
,
E. A.
Henry
,
T. C.
Sangster
,
M. S.
Singh
,
S. C.
Wilks
,
A.
MacKinnon
,
A.
Offenberger
,
D. M.
Pennington
,
K.
Yasuike
,
A. B.
Langdon
,
B. F.
Lasinski
,
J.
Johnson
,
M. D.
Perry
, and
E. M.
Campbell
, “
Intense high-energy proton beams from petawatt-laser irradiation of solids
,”
Phys. Rev. Lett.
85
,
2945
2948
(
2000
).
5.
P.
Mora
, “
Plasma expansion into a vacuum
,”
Phys. Rev. Lett.
90
,
185002
(
2003
).
6.
J.
Fuchs
,
P.
Antici
,
E.
D'Humieres
,
E.
Lefebvre
,
M.
Borghesi
,
E.
Brambrink
,
C. A.
Cecchetti
,
M.
Kaluza
,
V.
Malka
,
M.
Manclossi
,
S.
Meyroneinc
,
P.
Mora
,
J.
Schreiber
,
T.
Toncian
,
H.
Pepin
, and
R.
Audebert
, “
Laser-driven proton scaling laws and new paths towards energy increase
,”
Nat. Phys.
2
,
48
54
(
2006
).
7.
B. Z.
Djordjevic
,
A. J.
Kemp
,
J.
Kim
,
J.
Ludwig
,
R. A.
Simpson
,
S. C.
Wilks
,
T.
Ma
, and
D. A.
Mariscal
, “
Characterizing the acceleration time of laser-driven ion acceleration with data-informed neural networks
,”
Plasma Phys. Controlled Fusion
63
,
094005
(
2021
).
8.
J.
Kim
,
A. J.
Kemp
,
S. C.
Wilks
,
D. H.
Kalantar
,
S.
Kerr
,
D.
Mariscal
,
F. N.
Beg
,
C.
McGuffey
, and
T.
Ma
, “
Computational modeling of proton acceleration with multi-picosecond and high energy, kilojoule, lasers
,”
Phys. Plasmas
25
,
083109
(
2018
).
9.
R. A.
Simpson
,
D. A.
Mariscal
,
J.
Kim
,
G. G.
Scott
,
G. J.
Williams
,
E.
Grace
,
C.
McGuffey
,
S.
Wilks
,
A.
Kemp
,
N.
Lemos
,
B. Z.
Djordjevic
,
E.
Folsom
,
D.
Kalantar
,
R.
Zacharias
,
B.
Pollock
,
J.
Moody
,
F.
Beg
,
A.
Morace
,
N.
Iwata
,
Y.
Sentoku
,
M. J. E.
Manuel
,
M.
Mauldin
,
M.
Quinn
,
K.
Youngblood
,
M.
Gatu-Johnson
,
B.
Lahmann
,
C.
Haefner
,
D.
Neely
, and
T.
Ma
, “
Demonstration of TNSA proton radiography on the national ignition facility advanced radiographic capability (NIF-ARC) laser
,”
Plasma Phys. Controlled Fusion
63
,
124006
(
2021
).
10.
A.
Yogo
,
K.
Mima
,
N.
Iwata
,
S.
Tosaki
,
A.
Morace
,
Y.
Arikawa
,
S.
Fujioka
,
T.
Johzaki
,
Y.
Sentoku
,
H.
Nishimura
,
A.
Sagisaka
,
K.
Matsuo
,
N.
Kamitsukasa
,
S.
Kojima
,
H.
Nagatomo
,
M.
Nakai
,
H.
Shiraga
,
M.
Murakami
,
S.
Tokita
,
J.
Kawanaka
,
N.
Miyanaga
,
K.
Yamanoi
,
T.
Norimatsu
,
H.
Sakagami
,
S. V.
Bulanov
,
K.
Kondo
, and
H.
Azechi
, “
Boosting laser-ion acceleration with multi-picosecond pulses
,”
Sci. Rep.
7
,
42451
(
2017
).
11.
Y.
Takagi
,
N.
Iwata
,
E.
d'Humieres
, and
Y.
Sentoku
, “
Multivariate scaling of maximum proton energy in intense laser driven ion acceleration
,”
Phys. Rev. Res.
3
,
043140
(
2021
).
12.
A. L.
Meadowcroft
,
C. D.
Bentley
, and
E. N.
Stott
, “
Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics
,”
Rev. Sci. Instrum.
79
,
113102
(
2008
).
13.
A.
Mancic
,
J.
Fuchs
,
P.
Antici
,
S. A.
Gaillard
, and
P.
Audebert
, “
Absolute calibration of photostimulable image plate detectors used as (0.5–20 MeV) high-energy proton detectors
,”
Rev. Sci. Instrum.
79
,
073301
(
2008
).
14.
PlasmaPy Community, et al. (
2023
). “PlasmaPy, version 2023.5.1,” Zenodo. https://doi.org/10.5281/zenodo.8015753.
15.
S. C.
Wilks
and
M. R.
Black
, “
Proton radiography imager: Generates synthetic proton radiographs
,” (USDOE National Nuclear Security Administration (NNSA), 2017); available at https://www.osti.gov//servlets/purl/1397161.
16.
H.
Chen
,
A. J.
Link
,
R.
van Maren
,
P. K.
Patel
,
R.
Shepherd
,
S. C.
Wilks
, and
P.
Beiersdorfer
, “
High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactionsa)
,”
Rev. Sci. Instrum.
79
,
10E533
(
2008
).
17.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
,
M.
Roth
,
M.
Singh
,
S.
Hatchett
,
M. H.
Key
,
D.
Pennington
,
A.
MacKinnon
, and
R. A.
Snavely
, “
Energetic proton generation in ultra-intense laser–solid interactions
,”
Phys. Plasmas
8
,
542
549
(
2001
).
18.
D.
Mariscal
,
T.
Ma
,
S. C.
Wilks
,
A. J.
Kemp
,
G. J.
Williams
,
P.
Michel
,
H.
Chen
,
P. K.
Patel
,
B. A.
Remington
,
M.
Bowers
,
L.
Pelz
,
M. R.
Hermann
,
W.
Hsing
,
D.
Martinez
,
R.
Sigurdsson
,
M.
Prantil
,
A.
Conder
,
J.
Lawson
,
M.
Hamamoto
,
P.
Di Nicola
,
C.
Widmayer
,
D.
Hoemoelle
,
R.
Lowe-Webb
,
S.
Herriot
,
W.
Williams
,
D.
Alessi
,
D.
Kalantar
,
R.
Zacharias
,
C.
Haefner
,
N.
Thompson
,
T.
Zobrist
,
D.
Lord
,
N.
Hash
,
A.
Pak
,
N.
Lemos
,
M.
Tabak
,
C.
McGuffey
,
J.
Kim
,
F. N.
Beg
,
M. S.
Wei
,
P.
Norreys
,
A.
Morace
,
N.
Iwata
,
Y.
Sentoku
,
D.
Neely
,
G. G.
Scott
,
K.
Flippo
,
M.
Gatu-Johnson
, and
B.
Lahmann
, “
Erratum: ‘First demonstration of ARC-accelerated proton beams at the National Ignition Facility [Phys. Plasmas 26, 043110 (2019)]
,’”
Phys. Plasmas
27
,
129901
(
2020
).
19.
L.
Romagnani
,
A. P. L.
Robinson
,
R. J.
Clarke
,
D.
Doria
,
L.
Lancia
,
W.
Nazarov
,
M. M.
Notley
,
A.
Pipahl
,
K.
Quinn
,
B.
Ramakrishna
,
P. A.
Wilson
,
J.
Fuchs
,
O.
Willi
, and
M.
Borghesi
, “
Dynamics of the electromagnetic fields induced by fast electron propagation in near-solid-density media
,”
Phys. Rev. Lett.
122
,
025001
(
2019
).
20.
J. L.
Peebles
,
J. R.
Davies
,
D. H.
Barnak
,
T.
Cracium
,
M. J.
Bonino
, and
R.
Betti
, “
Axial proton probing of magnetic and electric fields inside laser-driven coils
,”
Phys. Plasmas
27
,
063109
(
2020
).
21.
Y.
Sentoku
,
A. J.
Kemp
,
R.
Presura
,
M. S.
Bakeman
, and
T. E.
Cowan
, “
Isochoric heating in heterogeneous solid targets with ultrashort laser pulses
,”
Phys. Plasmas
14
,
122701
(
2007
).
22.
R. A.
Simpson
,
G. G.
Scott
,
D.
Mariscal
,
D.
Rusby
,
P. M.
King
,
E.
Grace
,
A.
Aghedo
,
I.
Pagano
,
M.
Sinclair
,
C.
Armstrong
,
M. J. E.
Manuel
,
A.
Haid
,
K.
Flippo
,
L.
Winslow
,
M.
Gatu-Johnson
,
J. A.
Frenje
,
D.
Neely
,
S.
Kerr
,
G. J.
Williams
,
S.
Andrews
,
R.
Cauble
,
K.
Charron
,
R.
Costa
,
B.
Fischer
,
S.
Maricle
,
B.
Stuart
,
F.
Albert
,
N.
Lemos
,
A.
Mackinnon
,
A.
MacPhee
,
A.
Pak
, and
T.
Ma
, “
Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime
,”
Phys. Plasmas
28
,
013108
(
2021
).
23.
T.
Bonnet
,
M.
Comet
,
D.
Denis-Petit
,
F.
Gobet
,
F.
Hannachi
,
M.
Tarisien
,
M.
Versteegen
, and
M. M.
Aléonard
, “
Response functions of imaging plates to photons, electrons and 4He particles
,”
Rev. Sci. Instrum.
84
,
103510
(
2013
).
24.
A. F. A.
Bott
,
C.
Graziani
,
P.
Tzeferacos
,
T. G.
White
,
D. Q.
Lamb
,
G.
Gregori
, and
A. A.
Schekochihin
, “
Proton imaging of stochastic magnetic fields
,”
J. Plasma Phys.
83
,
905830614
(
2017
).
25.
J.
Davies
and
P.
Heuer
, “
Evaluation of direct inversion of proton radiographs in the context of cylindrical implosions
,” arXiv:2203.00495 (
2022
).
26.
B. Z.
Djordjevic
,
A. J.
Kemp
,
J.
Kim
,
R. A.
Simpson
,
S. C.
Wilks
,
T.
Ma
, and
D. A.
Mariscal
, “
Modeling laser-driven ion acceleration with deep learning
,”
Phys. Plasmas
28
,
043105
(
2021
).
27.
E. S.
Grace
,
T.
Ma
,
Z.
Guang
,
R. A.
Simpson
,
G. G.
Scott
,
D.
Mariscal
,
B.
Stuart
, and
R.
Trebino
, “
Rapid retrieval of first-order spatiotemporal distortions for ultrashort laser pulses
,”
Plasma Phys. Controlled Fusion
63
,
124005
(
2021
).
28.
P. V.
Heuer
,
L. S.
Leal
,
J. R.
Davies
,
E. C.
Hansen
,
D. H.
Barnak
,
J. L.
Peebles
,
F.
García-Rubio
,
B.
Pollock
,
J.
Moody
,
A.
Birkel
, and
F. H.
Seguin
, “
Diagnosing magnetic fields in cylindrical implosions with oblique proton radiography
,”
Phys. Plasmas
29
,
072708
(
2022
).
29.
N.
Iwata
,
K.
Mima
,
Y.
Sentoku
,
A.
Yogo
,
H.
Nagatomo
,
H.
Nishimura
, and
H.
Azechi
, “
Fast ion acceleration in a foil plasma heated by a multi-picosecond high intensity laser
,”
Phys. Plasmas
24
,
073111
(
2017
).
30.
M. F.
Kasim
,
L.
Ceurvorst
,
N.
Ratan
,
J.
Sadler
,
N.
Chen
,
A.
Sävert
,
R.
Trines
,
R.
Bingham
,
P. N.
Burrows
,
M. C.
Kaluza
, and
P.
Norreys
, “
Quantitative shadowgraphy and proton radiography for large intensity modulations
,”
Phys. Rev. E
95
,
023306
(
2017
).
31.
T.
Ma
,
D.
Mariscal
,
R.
Anirudh
,
T.
Bremer
,
B. Z.
Djordjevic
,
T.
Galvin
,
E.
Grace
,
S.
Herriot
,
S.
Jacobs
,
B.
Kailkhura
,
R.
Hollinger
,
J.
Kim
,
S.
Liu
,
J.
Ludwig
,
D.
Neely
,
J. J.
Rocca
,
G. G.
Scott
,
R. A.
Simpson
,
B. S.
Spears
,
T. S.
Spinka
,
K.
Swanson
,
J. J.
Thiagarajan
,
B.
Van Essen
,
S.
Wang
,
S. C.
Wilks
,
G. J.
Williams
,
J.
Zhang
,
M. C.
Herrmann
, and
C.
Haefner
, “
Accelerating the rate of discovery: Toward high-repetition-rate HED science
,”
Plasma Phys. Controlled Fusion
63
,
104003
(
2021
).
32.
D. A.
Mariscal
,
B. Z.
Djordjevic
,
E. S.
Grace
,
R.
Hollinger
,
T.
Ma
,
G. G.
Scott
,
H.
Song
,
R. A.
Simpson
,
J. J.
Rocca
, and
S.
Wang
, “
Design of flexible proton beam imaging energy spectrometers (probies)
,”
Plasma Phys. Controlled Fusion
63
,
114003
(
2021
).
33.
D. A.
Mariscal
,
C. M.
Krauland
,
B. Z.
Djordjevic
,
G. G.
Scott
,
R. A.
Simpson
,
E. S.
Grace
,
K.
Swanson
, and
T.
Ma
, “
Enhanced analysis of experimental x-ray spectra through deep learning
,”
Phys. Plasmas
29
,
093901
(
2022
).
34.
R. A.
Simpson
,
D.
Mariscal
,
G. J.
Williams
,
G. G.
Scott
,
E.
Grace
, and
T.
Ma
, “
Development of a deep learning based automated data analysis for step-filter x-ray spectrometers in support of high-repetition rate short-pulse laser-driven acceleration experiments
,”
Rev. Sci. Instrum.
92
,
075101
(
2021
).
You do not currently have access to this content.